International Journal of Theoretical Physics

, Volume 32, Issue 11, pp 2059–2076 | Cite as

Bianchi identities, electromagnetic waves, and charge conservation in theP(4) theory of gravitation and electromagnetism

  • J. H. Chilton
  • K. S. Hammon
  • L. K. Norris


The Bianchi identities for theP(4)=O(1, 3) ⊗ℝ4* theory of gravitation and electromagnetism are decomposed into the standardO(1, 3) Riemannian Bianchi identity plus an additional ℝ4* component. When combined with the Einstein-Maxwell affine field equations the ℝ4* components of theP(4) Bianchi identities imply conservation of magnetic charge and the wave equation for the Maxwell field strength tensor. These results are analyzed in light of the special geometrical postulates of theP(4) theory. We show that our development is the analog of the manner in which the Riemannian Bianchi identities, when combined with Einstein's field equations, imply conservation of stress-energy-momentum and the wave equation for the LanczosH-tensor.


Field Theory Elementary Particle Quantum Field Theory Field Strength Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cabibbo, N., and Ferrari, E. (1962).Nuovo Cimento,23, 1147.Google Scholar
  2. Chilton, J. H., and Norris, L. K. (1992).International Journal of Theoretical Physics,31, 1267–1282.Google Scholar
  3. Dodson, C. T. J., and Poston, T. (1977).Tensor Geometry, Pitman, London.Google Scholar
  4. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Spacetime, Cambridge University Press, Cambridge.Google Scholar
  5. Kheyfets, A., and Norris, L. K. (1988).International Journal of Theoretical Physics,27, 159–182.Google Scholar
  6. Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, Vol. I, Interscience, New York.Google Scholar
  7. Lanczos, C. (1962).Reviews of Modern Physics,34, 379–389.Google Scholar
  8. Norris, L. K. (1985).Physical Review D,31, 3090–3098.Google Scholar
  9. Norris, L. K. (1991).International Journal of Theoretical Physics,30, 1127–1150.Google Scholar
  10. Norris, L. K., Fulp, R. O., and Davis, W. R. (1980).Physics Letters,79A, 278–282.Google Scholar
  11. Schwinger, J. (1969).Science,165, 757.Google Scholar
  12. Synge, J. L. (1960).Relativity: The General Theory, North-Holland, Amsterdam.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • J. H. Chilton
    • 1
  • K. S. Hammon
    • 1
  • L. K. Norris
    • 2
  1. 1.Department of PhysicsNorth Carolina State UniversityRaleigh
  2. 2.Department of MathematicsNorth Carolina State UniversityRaleigh

Personalised recommendations