Skip to main content
Log in

Real spin-Clifford bundle and the spinor structure of space-time

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By analyzing the conditions for the existence on a space-time ℒ of a global algebraic spinor field, we prove the following result, known as Geroch's theorem: A necessary and sufficient condition for ℒ to admit a spinor structure is that the orthonormal frame bundleF 0(ℒ) have a global section. Our proof, which does not use in any stage the complexification of ℝ1,3 (the space-time Clifford algebra), is simple, requiring only the explicit construction of the algebraic spinor and the spinorial metric within ℝ1,3 and elementary facts about associated bundles and the bundle reduction process. This is to be compared with the original proof, which uses the full algebraic topology machinery. We also clarify the relation of the covariant spinor structure and Graf'se-spinor structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atiyah, M. F., Bott, R., and Shapiro, A. (1964).Topology 3(Suppl. 1), 3.

    Google Scholar 

  • Been, I. M., and Tucker, R. W. (1985).Communications in Mathematical Physics,98, 53.

    Google Scholar 

  • Bichteler, K. (1968).Journal of Mathematical Physics,9, 813.

    Google Scholar 

  • Blaine Lawson, Jr., H., and Michelsohn, M. L. (1983).Spin Geometry, Universidad Federal do Ceará, Brazil.

    Google Scholar 

  • Blau, M. (1987).Letters in Mathematical Physics,13, 83.

    Google Scholar 

  • Bugajska, K. (1968). InClifford Algebras and their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds., D. Reidel, Dordrecht.

    Google Scholar 

  • Bugajska, K. (1979).International Journal of Theoretical Physics,18, 77.

    Google Scholar 

  • Choquet-Bruhat, Y., Dewitt-Morette, C., Dillard-Bleick, M. (1982).Analysis, Manifolds and Physics, rev. ed. North-Holland, Amsterdam.

    Google Scholar 

  • Crumeyrole, A. (1969).Annales de l'Institut Henri Poincaré,XI, 19.

    Google Scholar 

  • Figueiredo, V. L., Oliveira, E. C., and Rodrigues, Jr., W. A. (1990).International Journal of Theoretical Physics, this issue.

  • Geroch, R. (1968).Mathematical Physics,9, 1739.

    Google Scholar 

  • Graf, W. (1978).Annales de l'Institut Henri Poincaré,XXIV, 85.

    Google Scholar 

  • Lee, K. K. (1973).General Relativity and Gravitation,6, 421.

    Google Scholar 

  • Milnor, J. (1963).L'Enseignement Mathematique,9, 198.

    Google Scholar 

  • Popovici, I. (1976).Annales de l'Institut Henri Poincaré,XXV, 35.

    Google Scholar 

  • Porteous, I. R. (1981).Topological Geometry, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Rodrigues, Jr., W. A., Faria-Rosa, M. A., Maia, Jr., A., and Recami, E. (1989). R. T., IMECC-UNICAMP, to appear inHadronic Journal.

  • Sachs, R. K., and Wu, H. (1977).General Relativity for Mathematicians, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, W.A., Figueiredo, V.L. Real spin-Clifford bundle and the spinor structure of space-time. Int J Theor Phys 29, 413–424 (1990). https://doi.org/10.1007/BF00674440

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00674440

Keywords

Navigation