Skip to main content
Log in

Dirac and Maxwell equations in the Clifford and spin-Clifford bundles

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We show how to write the Dirac and the generalized Maxwell equations (including monopoles) in the Clifford and spin-Clifford bundles (of differential forms) over space-time (either of signaturep=1,q=3 orp=3,q=1). In our approach Dirac and Maxwell fields are represented by objects of the same mathematical nature and the Dirac and Maxwell equations can then be directly compared. We show also that all presentations of the Maxwell equations in (matrix) Dirac-like “spinor” form appearing in the literature can be obtained by choosing particular global idempotents in the bundles referred to above. We investigate also the transformation laws under the action of the Lorentz group of Dirac and Maxwell fields (defined as algebraic spinor sections of the Clifford or spin-Clifford bundles), clearing up several misunderstandings and misconceptions found in the literature. Among the many new results, we exhibit a factorization of the Maxwell field into two-component spinor fields (Weyl spinors), which is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharonov, Y., and Susskind, L. (1967).Physical Review,158, 1237.

    Google Scholar 

  • Blaine Lawson, Jr., H., and Michelsohn, M. L. (1983).Spin-Geometry, Universidad Federal do Ceará, Brazil.

    Google Scholar 

  • Bleecker, D. (1971).Gauge Theory and Variational Principles, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Edmonds, J. D. (1975).Letters al Nuovo Cimento,13, 185.

    Google Scholar 

  • Faria-Rosa, M. A., and Rodrigues, Jr., W. A. (1989).Modern Physics Letters A,4, 175.

    Google Scholar 

  • Faria-Rosa, M. A., Recami, E., and Rodrigues, Jr., W. A. (1986).Physics Letters B,173, 223.

    Google Scholar 

  • Faria-Rosa, M. A., Recami, E., and Rodrigues, Jr., W. A. (1987).Physics Letters B,188, 511.

    Google Scholar 

  • Figueiredo, V. L., Oliveira, E. C., and Rodrigues, Jr., W. A. (1990). Covariant, algebraic, and operator spinors,International Journal of Theoretical Physics, this issue.

  • Frescura, F. A. M., and Hiley, B. J. (1980).Foundations of Physics,10, 705.

    Google Scholar 

  • Gianetto, E. (1985).Lettere al Nuovo Cimento,44, 140, 145.

    Google Scholar 

  • Graf, W. (1978).Annales de l'Institut Henri Poincaré,XXIV, 85 (1978).

    Google Scholar 

  • Guèret, P. (1989). Application de l'algebra multivectorielle de Clifford à la construction de spineurs réels de Dirac, Notes of the University of Bari, Italy.

  • Hestenes, D. (1967).Journal of Mathematical Physics,8, 789.

    Google Scholar 

  • Hestenes, D. (1971a).American Journal of Physics,39, 1013.

    Google Scholar 

  • Hestenes, D. (1971b).American Journal of Physics,39, 1028.

    Google Scholar 

  • Hestenes, D. (1975).Journal of Mathematical Physics,16, 556.

    Google Scholar 

  • Hestenes, D. (1985). Clifford algebra and the interpretation of quantum mechanics, inClifford Algebras and their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds., D. Reidel, Dordrecht.

    Google Scholar 

  • Hestenes, D. (1986).Space-Time Algebra, Gordon and Breach, New York.

    Google Scholar 

  • Landau, L. D., and Lifschitz, E. M. (1971).Relativistic Quantum Theory, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Mignani, R., Recami, E., and Baldo, M. (1974).Lettere al Nuovo Cimento,11, 568.

    Google Scholar 

  • Moses, H. E. (1958).Lettere al Nuovo Cimento (Supplemento),1, 1.

    Google Scholar 

  • Oppenheimer, J. (1931).Physical Review,38, 725.

    Google Scholar 

  • Penrose, R., and Rindler, W. (1984).Spinors and Space-Time, Vols. I and II, Cambridge University Press, Cambridge.

    Google Scholar 

  • Porteous, I. R. (1981).Topological Geometry, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Rodrigues, Jr., W. A., and Faria-Rosa, M. A. (1989).Foundations of Physics,19, 705.

    Google Scholar 

  • Rodrigues, Jr., W. A., and Figueiredo, V. L. (1989). A new approach to the spinor-structure of space-time, inAtti del VIII Convegno Nazionale di Relativitá Generale e Fisica della Gravitazione, M. Toller, M. Cerdonio, M. Francaviglia, and C. Cianci, eds., World Scientific, Singapore, in press.

    Google Scholar 

  • Rodrigues, Jr., W. A., and Figueiredo, V. L. (1990). Real spin-Clifford bundle and the spinor structure of space-time,International Journal of Theoretical Physics this issue.

  • Rodrigues, Jr., W. A., Faria-Rosa, M. A., Maia, Jr., A., and Recami, E. (1988). Magnetic monopoles without string by Kähler-Clifford algebra: A satisfactory formalism, inProceedings of the 6th Simposio Latino Americana de Relatividad y Gravitation, M. Novello, ed., World Scientific, Singapore.

    Google Scholar 

  • Rodrigues, Jr., W. A., Faria-Rosa, M. A., Maia, Jr., A., and Recami, E. (1989a). Physico-mathematical approach to generalized monopoles without string,Hadronic Journal, to appear.

  • Rodrigues, Jr., W. A., Maia, Jr., A., Faria-Rosa, M. A., and Recami, E. (1989b).Physics Letters B,220, 195.

    Google Scholar 

  • Sachs, M. (1982).General Relativity and Matter, D. Reidel, Dordrecht.

    Google Scholar 

  • Sallhöfer, H. (1986).Zeitschrift für Naturforschung,41a, 468, 1087, 1335, 1431.

    Google Scholar 

  • Srivastrava, P. P. (1985).Supersymmetry, Superfields and Supergravity, Adam Hilger, Bristol.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, W.A., Capelas de Oliveira, E. Dirac and Maxwell equations in the Clifford and spin-Clifford bundles. Int J Theor Phys 29, 397–412 (1990). https://doi.org/10.1007/BF00674439

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00674439

Keywords

Navigation