Abstract
We show how to write the Dirac and the generalized Maxwell equations (including monopoles) in the Clifford and spin-Clifford bundles (of differential forms) over space-time (either of signaturep=1,q=3 orp=3,q=1). In our approach Dirac and Maxwell fields are represented by objects of the same mathematical nature and the Dirac and Maxwell equations can then be directly compared. We show also that all presentations of the Maxwell equations in (matrix) Dirac-like “spinor” form appearing in the literature can be obtained by choosing particular global idempotents in the bundles referred to above. We investigate also the transformation laws under the action of the Lorentz group of Dirac and Maxwell fields (defined as algebraic spinor sections of the Clifford or spin-Clifford bundles), clearing up several misunderstandings and misconceptions found in the literature. Among the many new results, we exhibit a factorization of the Maxwell field into two-component spinor fields (Weyl spinors), which is important.
Similar content being viewed by others
References
Aharonov, Y., and Susskind, L. (1967).Physical Review,158, 1237.
Blaine Lawson, Jr., H., and Michelsohn, M. L. (1983).Spin-Geometry, Universidad Federal do Ceará, Brazil.
Bleecker, D. (1971).Gauge Theory and Variational Principles, Addison-Wesley, Reading, Massachusetts.
Edmonds, J. D. (1975).Letters al Nuovo Cimento,13, 185.
Faria-Rosa, M. A., and Rodrigues, Jr., W. A. (1989).Modern Physics Letters A,4, 175.
Faria-Rosa, M. A., Recami, E., and Rodrigues, Jr., W. A. (1986).Physics Letters B,173, 223.
Faria-Rosa, M. A., Recami, E., and Rodrigues, Jr., W. A. (1987).Physics Letters B,188, 511.
Figueiredo, V. L., Oliveira, E. C., and Rodrigues, Jr., W. A. (1990). Covariant, algebraic, and operator spinors,International Journal of Theoretical Physics, this issue.
Frescura, F. A. M., and Hiley, B. J. (1980).Foundations of Physics,10, 705.
Gianetto, E. (1985).Lettere al Nuovo Cimento,44, 140, 145.
Graf, W. (1978).Annales de l'Institut Henri Poincaré,XXIV, 85 (1978).
Guèret, P. (1989). Application de l'algebra multivectorielle de Clifford à la construction de spineurs réels de Dirac, Notes of the University of Bari, Italy.
Hestenes, D. (1967).Journal of Mathematical Physics,8, 789.
Hestenes, D. (1971a).American Journal of Physics,39, 1013.
Hestenes, D. (1971b).American Journal of Physics,39, 1028.
Hestenes, D. (1975).Journal of Mathematical Physics,16, 556.
Hestenes, D. (1985). Clifford algebra and the interpretation of quantum mechanics, inClifford Algebras and their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds., D. Reidel, Dordrecht.
Hestenes, D. (1986).Space-Time Algebra, Gordon and Breach, New York.
Landau, L. D., and Lifschitz, E. M. (1971).Relativistic Quantum Theory, Addison-Wesley, Reading, Massachusetts.
Mignani, R., Recami, E., and Baldo, M. (1974).Lettere al Nuovo Cimento,11, 568.
Moses, H. E. (1958).Lettere al Nuovo Cimento (Supplemento),1, 1.
Oppenheimer, J. (1931).Physical Review,38, 725.
Penrose, R., and Rindler, W. (1984).Spinors and Space-Time, Vols. I and II, Cambridge University Press, Cambridge.
Porteous, I. R. (1981).Topological Geometry, 2nd ed., Cambridge University Press, Cambridge.
Rodrigues, Jr., W. A., and Faria-Rosa, M. A. (1989).Foundations of Physics,19, 705.
Rodrigues, Jr., W. A., and Figueiredo, V. L. (1989). A new approach to the spinor-structure of space-time, inAtti del VIII Convegno Nazionale di Relativitá Generale e Fisica della Gravitazione, M. Toller, M. Cerdonio, M. Francaviglia, and C. Cianci, eds., World Scientific, Singapore, in press.
Rodrigues, Jr., W. A., and Figueiredo, V. L. (1990). Real spin-Clifford bundle and the spinor structure of space-time,International Journal of Theoretical Physics this issue.
Rodrigues, Jr., W. A., Faria-Rosa, M. A., Maia, Jr., A., and Recami, E. (1988). Magnetic monopoles without string by Kähler-Clifford algebra: A satisfactory formalism, inProceedings of the 6th Simposio Latino Americana de Relatividad y Gravitation, M. Novello, ed., World Scientific, Singapore.
Rodrigues, Jr., W. A., Faria-Rosa, M. A., Maia, Jr., A., and Recami, E. (1989a). Physico-mathematical approach to generalized monopoles without string,Hadronic Journal, to appear.
Rodrigues, Jr., W. A., Maia, Jr., A., Faria-Rosa, M. A., and Recami, E. (1989b).Physics Letters B,220, 195.
Sachs, M. (1982).General Relativity and Matter, D. Reidel, Dordrecht.
Sallhöfer, H. (1986).Zeitschrift für Naturforschung,41a, 468, 1087, 1335, 1431.
Srivastrava, P. P. (1985).Supersymmetry, Superfields and Supergravity, Adam Hilger, Bristol.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rodrigues, W.A., Capelas de Oliveira, E. Dirac and Maxwell equations in the Clifford and spin-Clifford bundles. Int J Theor Phys 29, 397–412 (1990). https://doi.org/10.1007/BF00674439
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00674439