Skip to main content
Log in

Terminal model of Newtonian dynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A new type of dissipation function which does not satisfy the Lipschitz condition at equilibrium states is proposed. Newtonian dynamics supplemented by this dissipation function becomes irreversible and has a well-organized probabilistic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. (1988).Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, p. 331.

    Google Scholar 

  • da Costa, N., and Doria, F. (1991).International Journal of Theoretical Physics,30(8), 1041–1073.

    Google Scholar 

  • Ford, J. (1988).Quantum Chaos, Directions of Chaos, World Scientific, Singapore, pp. 128–147.

    Google Scholar 

  • Godel, K. (1931).Monatshefte fur Mathematik und Physik,38, 173.

    Google Scholar 

  • Prigogine, I. (1980).From Being to Becoming, Freeman, San Francisco.

    Google Scholar 

  • Reynolds, O. (1895).Philosophical Transactions of the Royal Society,1895, 186.

    Google Scholar 

  • Richardson, D. (1968).Journal of Symbolic Logics,33, 514.

    Google Scholar 

  • Zak, M. (1970).Applied Mathematics and Mechanics, Moscow,39, 1048–1052.

    Google Scholar 

  • Zak, M. (1974).Non-Classical Problem in Continuum Mechanics, Leningrad University Press, pp. 61–83.

  • Zak, M. (1982a).Acta Mechanica,43, 97–117.

    Google Scholar 

  • Zak, M. (1982b).Solid Mechanics Archives,7, 467–503.

    Google Scholar 

  • Zak, M. (1982c).Journal of Elasticity,12(2), 219–229.

    Google Scholar 

  • Zak, M. (1983).ASME, Journal of Applied Mechanics,50, 227–228.

    Google Scholar 

  • Zak, M. (1984).Acta Mechanica,52, 119–132.

    Google Scholar 

  • Zak, M. (1985a).Physics Letters A,107A(3), 125–128.

    Google Scholar 

  • Zak, M. (1985b).International Journal of Nonlinear Mechanics,20(4), 297–308.

    Google Scholar 

  • Zak, M. (1986a).Physics,18D, 486–487.

    Google Scholar 

  • Zak, M. (1986b).Physics Letters A,118(3), 139–143.

    Google Scholar 

  • Zak, M. (1988).Physics Letters A,133(1,2), 18–22

    Google Scholar 

  • Zak, M. (1989a).Mathematics and Computer Modelling,12(8), 985–990.

    Google Scholar 

  • Zak, M. (1989b).Neural Networks,2(3), 259–274.

    Google Scholar 

  • Zak, M. (1989c).Applied Mathematics Letters,2(1), 69–74.

    Google Scholar 

  • Zak, M. (1989d).Complex Systems,1989(3), 471–492.

    Google Scholar 

  • Zak, M. (1990a).Applied Mathematics Letters,3(3), 131–135.

    Google Scholar 

  • Zak, M. (1900b).Biological Cybernetics,64(1), 15–23.

    Google Scholar 

  • Zak, M. (1990c).Mathematics and Computer Modelling,13(1), 33–37.

    Google Scholar 

  • Zak, M. (1991a).Biological Cybernetics,64, 343–351.

    Google Scholar 

  • Zak, M. (1991b).IEEE Expert,1991(August), 4–10.

    Google Scholar 

  • Zak, M. (1992).International Journal of Theoretical Physics,31(2), 333–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zak, M. Terminal model of Newtonian dynamics. Int J Theor Phys 32, 159–190 (1993). https://doi.org/10.1007/BF00674403

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00674403

Keywords

Navigation