International Journal of Theoretical Physics

, Volume 32, Issue 1, pp 43–50 | Cite as

Stochastic strings, topology, and space-time confinement

  • Kh. Namsrai


Stochastic space-time caused by random strings is considered. By using a conformlike transformation of the metric, we reconstruct “gravitational” theory and derive its consequences. Such an approach permits us to find natural quark confinement due to induced gravitation and to take into account the topological structure of space-time in any physical quantity.


Field Theory Elementary Particle Quantum Field Theory Physical Quantity Topological Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banai, M. (1984).International Journal of Theoretical Physics,23, 1043.Google Scholar
  2. Banai, M. (1985).Foundations of Physics,15, 1203.Google Scholar
  3. Cole, E. A. B. (1972).International Journal of Theoretical Physics,5, 437.Google Scholar
  4. Finkelstein, D. (1969).Physical Review,184, 1261.Google Scholar
  5. Finkelstein, D. (1972).Physical Review D,5, 320, 2922.Google Scholar
  6. Finkelstein, D. (1974).Physical Review D,9, 2219.Google Scholar
  7. Fradkin, E. S., and Tseytlin, A. A. (1985).JETP Letters,41(4), 169.Google Scholar
  8. Friedberg, R., and Lee, T. D. (1983).Nuclear Physics B,225, 1.Google Scholar
  9. Fujiwara, K. (1980).Foundations of Physics,10, 309.Google Scholar
  10. Gomez, C. (1982).Physics Letters B,118, 407.Google Scholar
  11. Green, M. B., Schwarz, J. H., and Witten, E. (1987).Superstring Theory, Cambridge University Press, Cambridge.Google Scholar
  12. Hawking, S. W. (1978).Nuclear Physics B,144, 349.Google Scholar
  13. Hawking, S. W. (1983).Philosophical Transactions of the Royal Society of London A,310, 303.Google Scholar
  14. Kirilov, A. A., and Kochnev, A. A. (1987).JETP Letters,46(9), 345.Google Scholar
  15. Landau, L. D., and Lifschitz, I. M. (1971).The Classical Theory of Fields, 3rd ed., Pergamon Press, Oxford.Google Scholar
  16. Lee, T. D. (1983).Physics Letters B,122, 217.Google Scholar
  17. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, Freeman, San Francisco.Google Scholar
  18. Namsrai, Kh. (1986).Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics, Reidel, Dordrecht, Holland.Google Scholar
  19. Namsrai, Kh. (1991).International Journal of Theoretical Physics,30(5), 587.Google Scholar
  20. Polyakov, A. M. (1981).Physics Letters B,103, 207.Google Scholar
  21. Prugovecki, E. (1984).Stochastic Quantum Mechanics and Quantum Space-Time, Reidel, Dordrecht, Holland.Google Scholar
  22. Strominger, A. (1984).Physical Review Letters,52, 1733.Google Scholar
  23. Weinberg, S. (1972).Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity, Wiley, New YorkGoogle Scholar
  24. Wheeler, J. A. (1964). InRelativity, Groups and Topology, C. DeWitt and B. S. DeWitt, eds., Gordon and Breach, New York.Google Scholar
  25. Wilson, K. G. (1974).Physical Review D,10, 2445.Google Scholar
  26. Yamamoto, H. (1985).Physical Review D,32, 2659.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Kh. Namsrai
    • 1
  1. 1.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations