International Journal of Theoretical Physics

, Volume 27, Issue 9, pp 1137–1143 | Cite as

Magnetograph transformation in MFD

  • Shesh Nath Singh


The magnetograph transformation is introduced and employed to obtain solutions for plane, rotating, viscous, incompressible flows with orthogonal magnetic and velocity fields.


Field Theory Elementary Particle Quantum Field Theory Velocity Field Incompressible Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, W. F. (1965).Non-linear Partial Differential Equations in Engineering, Academic Press, New York.Google Scholar
  2. Kingston, J. G., and Talbot, R. (1969). The solutions to a class of magnetohydrodynamics flows with orthogonal magnetic and velocity field distribution,Zeitschrift für Angewandte Mathematische Physik 20, 956–965.Google Scholar
  3. Singh, S. N., Choubey, K. R., and Singh, B. P. (1986). On steady transverse magnetogasflow,Journal of Mathematical Physics 27, 1466–1470.Google Scholar
  4. Gopal Krishna, A. V., and Ramchandra Rao, A. (1975). Intrinsic equations of steady rotating incompressible viscous fluid flows,Zeitschrift für Angewandte Mathematische Mechanik,55, 387–389.Google Scholar
  5. Indrasena, A. (1978). Steady rotating hydromagnetic flows,Tensor, N.S.,32, 350–354.Google Scholar
  6. Singh, S. N., and Singh, H. P. (1984). On geometrization of steady rotating hydromagnetic flows,Astrophysics and Space Science,102, 3–9.Google Scholar
  7. Chandra, O. P. and Garg, M. R. (1977). On steady plane magnetohydrodynamic flows with orthogonal magnetic and velocity fields,International Journal of Engineering Science,17, 251–257.Google Scholar
  8. Puri, P., and Kulshestha, P. K. (1976). Unsteady hydromagnetic boundary layer in a rotating medium,Journal of Applied Mechanics,98, 205–208.Google Scholar
  9. Slater, J. (1966).Generalized Hypergeometric Functions, Cambridge University Press, 1966, Chapter 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Shesh Nath Singh
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations