International Journal of Theoretical Physics

, Volume 4, Issue 4, pp 305–320 | Cite as

On the geometric structure of a parity-conserving relativistic quantum field theory

  • C. v. Westenholz
Article
  • 26 Downloads

Abstract

Wheeler's conjecture that there might exist a ‘principle’ which rules out parity-non-conserving spaces is analysed. The following result has been obtained: A local relativistic quantum field theory is parity-conserving if the following conditions hold:
  1. (a)

    The fields are derived from geometry, i.e. they are represented by quantised currents (in the sense of de Rham); and

     
  2. (b)

    The theory may be defined on a connected and, under certain restrictions, on a disconnected orientable space-time continuumM4.

     

Keywords

Field Theory Elementary Particle Quantum Field Theory Geometric Structure Relativistic Quantum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohr and Rosenfeld (1933).Matematisk-fysiske Meddelelser,12, 8.Google Scholar
  2. Choquet-Bruhat (1968).Géométrie Différentielle et Systèmes Extérieurs. Dunod, Paris.Google Scholar
  3. Flanders (1963).Differential Forms with Applications to the Physical Sciences. Academic Press.Google Scholar
  4. Lichnerowicz (1964).Bulletin de la Société mathematique de France,92, 11.Google Scholar
  5. de Rham (1960).Variétés Différentiables. Hermann, Paris.Google Scholar
  6. Segal (1968).Topology,7, 147.Google Scholar
  7. Schwartz, L. (1957).Théorie des Distributions. Hermann, Paris.Google Scholar
  8. Souriau (1964).Geometrie et Relativité. Hermann, Paris.Google Scholar
  9. Wheeler and Misner (1957).Annals of Physics,2, 525–603.Google Scholar
  10. Wheeler (1962).Geometrodynamics. Academic Press, New York.Google Scholar
  11. von Westenholz (1970).Annals of Physics, Vol. 25, No. 4, p. 337.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1971

Authors and Affiliations

  • C. v. Westenholz
    • 1
  1. 1.Department of Applied MathematicsRhodes UniversityGrahamstown/C.P.South Africa

Personalised recommendations