Advertisement

International Journal of Theoretical Physics

, Volume 34, Issue 9, pp 1843–1854 | Cite as

Low-temperature properties of a quantum Fermi gas in curved space-time

  • Igor K. Kulikov
  • Petr I. Pronin
Article
  • 74 Downloads

Abstract

We consider the behavior of an ideal quantum Fermi gas in curved space-time. We obtain and analyze the expressions for the densities of the Helmholtz free energy and grand thermodynamic potential in this case. We find the dependence of chemical potential and Fermi energy on the curvature of space-time and compute the explicit expression for the chemical potential of a Fermi gas at high densities and in the low-temperature approximation.

Keywords

Physical Review Helmholtz Free Energy Fermi Distribution Function External Gravitational Field Imaginary Time Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birrell, N. D., and Davies, P. S. W. (1982).Quantum Fields in Curved Space-Time, Cambridge University Press, Cambridge.Google Scholar
  2. Bunch, T., and Parker, L. (1979).Physical Review D,20, 2490–2510.CrossRefADSGoogle Scholar
  3. Denardo, G., and Spalucci, E. (1983).Physics Letters,130B, 43–46.ADSGoogle Scholar
  4. DeWitt, B. S. (1965).Dynamical Theory of Groups and Fields, Gordon and Breach, New York.MATHGoogle Scholar
  5. Dolan, L., and Jackiw, R. (1974).Physical Review D,9, 3320–3341.CrossRefADSGoogle Scholar
  6. Huang, K. (1963).Statistical Mechanics, Wiley, New York.MATHGoogle Scholar
  7. Kapusta, J. (1979).Nuclear Physics B,148, 461–498.CrossRefADSGoogle Scholar
  8. Kislinger, M. B., and Morley, P. D. (1976).Physical Review D,13, 2765–2770, 2771–2777.CrossRefADSGoogle Scholar
  9. Kulikov, I., and Pronin, P. (1993).International Journal of Theoretical Physics,32, 1261–1273.MathSciNetCrossRefGoogle Scholar
  10. Matsubara, T. (1955).Progress of Theoretical Physics,14, 351–378.MATHMathSciNetCrossRefADSGoogle Scholar
  11. Morley, P. D. (1978).Physical Review D,17, 598–610.MathSciNetCrossRefADSGoogle Scholar
  12. Panangaden, P. (1981).Physical Review D,23, 1735–1746.CrossRefADSGoogle Scholar
  13. Petrov, A. Z. (1969).Einstein Spaces, Pergamon, Oxford.MATHGoogle Scholar
  14. Weinberg, S. (1974).Physical Review D,9, 3357–3378.CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Igor K. Kulikov
    • 1
  • Petr I. Pronin
    • 2
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlanta
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations