Skip to main content
Log in

Nonlinear quantum mechanics is a classical theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum mechanics with nonlinear operators is shown to be an essentially classical theory. A general scheme of delinearization of a quantum theory is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfsen, E. M. (1971).Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin.

    Google Scholar 

  • Asimov, L., and Ellis, A. J. (1980).Convexity Theory and Its Applications in Functional Analysis, Academic Press, London.

    Google Scholar 

  • Beltrametti, E. G. (1985). The non-unique decomposition of mixtures: Some remarks, inSymposium on the Foundations of Modern Physics (Joensuu, 1985), P. Lahti and P. Mittelstaedt, eds., World Scientific, Singapore.

    Google Scholar 

  • Białynicki-Birula, I., and Mycielski, J. (1976).Annals of Physics,100, 62–93.

    Google Scholar 

  • Bohm, D. (1987). An ontological foundation for the quantum theory, inSymposium on the Foundations of Modern Physics (Joensuu, 1987), P. Lahti and P. Mittelstaedt, eds., World Scientific, Singapore.

    Google Scholar 

  • Bugajski, S. (1979). A new concept of quantum mixed states, Report to the 6th International Congress of Logic, Methodology and Philosophy of Science, Hannover, Germany.

    Google Scholar 

  • Bugajski, S. (1980). Towards a nonlinear quantum mechanics, Report to the 13th Symposium on Mathematical Physics, Toruń, Poland.

  • Bugajski, S. (1981). Nonlinear extension of “quantum logic”, Report to the Short Conference on Universal Algebra, Bern, Switzerland.

  • Bugajski, S., and Lahti, P. (1980).International journal of Theoretical Physics,19, 499–514.

    Google Scholar 

  • Busch, P. (1987). Unsharp reality and the question of quantum systems, inSymposium on the Foundations of Modern Physics (Joensuu, 1987), P. Lahti and P. Mittelstaedt, eds., World Scientific, Singapore.

    Google Scholar 

  • Davies, E. B. (1976).Quantum Theory of Open Systems, Academic Press, London.

    Google Scholar 

  • Davies, E. B. (1979).Communications in Mathematical Physics,64, 191–210.

    Google Scholar 

  • Ghirardi, G. C., Rimini, A., and Weber, T. (1976).Nuovo Cimenta,36B, 97–118.

    Google Scholar 

  • Gisin, N. (1981).Helvetica Physica Acta, 54, 457.

    Google Scholar 

  • Haag, R., and Bannier, U. (1978).Communications in Mathematical Physics,60, 1–6.

    Google Scholar 

  • Holevo, A. S. (1982).Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam.

    Google Scholar 

  • Ludwig, G. (1983).Foundations of Quantum Mechanics I, Springer-Verlag, New York.

    Google Scholar 

  • Ludwig, G. (1990).Foundations of Physics,20, 621–633.

    Google Scholar 

  • Mielnik, B. (1974).Communications in Mathematical Physics,37, 221–256.

    Google Scholar 

  • Misra, B. (1974). On a new definition of quantal states, inPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Neumann, H. (1985). The size of sets of physically possible states and effects, inRecent Developments in Quantum Logic, P. Mittelstaedt and E.-W. Stachow, eds., Bibliographisches Institut, Zürich.

    Google Scholar 

  • Weinberg, S. (1989).Annals of Physics,194, 336–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugajski, S. Nonlinear quantum mechanics is a classical theory. Int J Theor Phys 30, 961–971 (1991). https://doi.org/10.1007/BF00673988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00673988

Keywords

Navigation