International Journal of Theoretical Physics

, Volume 31, Issue 8, pp 1421–1432 | Cite as

Equivalence in two-, three-, and four-dimensional space-times

  • Ø. Grøn
  • E. Eriksen


In a recent discussion E. A. Desloge has performed an analysis of the kinematic nonequivalence of a uniformly accelerating reference frame (UAR) and a frame at rest in a uniform gravitational field (UGF). Desloge considered two-dimensional space-times. We here review the geometrical description of gravity in two, three, and four space-time dimensions in order to discuss thedynamical nonequivalence of UAR and UGF both in two and in four space-time dimensions. We also consider the motion of photons in UAR and UGF in order to illustrate some relativistic effects of a kinematic nature.


Field Theory Elementary Particle Quantum Field Theory Reference Frame Relativistic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amundsen, P. A., and Grøn, Ø. (1983).Physical Review D,27, 1731.Google Scholar
  2. Barrow, J. D., Burd, A. B., and Lancaster, D. (1986).Classical and Quantum Gravity,3, 551.Google Scholar
  3. Bezerra, V. B. (1987).Physical Review D,35, 2031.Google Scholar
  4. Brown, J. D. (1988).Lower Dimensional Gravity, World Scientific, Singapore.Google Scholar
  5. Brown, J. D., and Henneaux, M. (1986).Communications in Mathematical Physics,104, 207.Google Scholar
  6. Brown, J. D., Henneaux, M., and Teitelboim, C. (1986).Physical Review D,33, 319.Google Scholar
  7. Burges, C. J. C. (1985).Physical Review D,32, 504.Google Scholar
  8. Calheiros, A., and Maia, M. D. (1988). A model for two dimensional gravity, inProceedings 5th Marcel Grossmann Meeting, University of Western Australia, D. G. Blair and M. J. Buckingham, eds., p. 881.Google Scholar
  9. Cho, Y. M., Park, D. H., and Han, G. H. (1991).Physical Review D,43, 1421.Google Scholar
  10. Clement, G. (1976).Nuclear Physics B,266, 437.Google Scholar
  11. Clement, G. (1985).International Journal of Theoretical Physics,24, 267.Google Scholar
  12. Clement, G. (1990).Annals of Physics,201, 241.Google Scholar
  13. Collas, P. (1977).American Journal of Physics,45, 833.Google Scholar
  14. Cornish, N. J., and Frankel, N. E. (1991).Physical Review D,43, 2555.Google Scholar
  15. Dereli, T., and Tucker, R. W. (1988).Classical and Quantum Gravity,5, 951.Google Scholar
  16. Deser, S. (1985).Classical and Quantum Gravity,2, 489.Google Scholar
  17. Deser, S. (1990). Gravity and gauge theories in three dimensions, inProceedings of the First International Symposium on Particles Strings and Cosmology (PASCOS-90).Google Scholar
  18. Deser, S., and Jackiw, R. (1984).Annals of Physics,153, 405.Google Scholar
  19. Deser, S., and Jackiw, R. (1989).Annals of Physics,192, 352.Google Scholar
  20. Deser, S., and Laurent, B. (1986).General Relativity and Gravitation,18, 617.Google Scholar
  21. Deser, S., and Mazur, P. O. (1985).Classical and Quantum Gravity,2, L51.Google Scholar
  22. Deser, S., Jackiw, R., and Hooft, G. T. (1984).Annals of Physics,152, 220.Google Scholar
  23. Desloge, E. A. (1989).American Journal of Physics,57, 1121.Google Scholar
  24. Desloge, E. A. (1990).International Journal of Theoretical Physics,29, 193.Google Scholar
  25. Duncan, D. C., and Ihrig, E. C. (1991).General Relativity and Gravitation,23, 381.Google Scholar
  26. Francisco, G., and Matsas, G. E. (1989).American Journal of Physics,57, 359.Google Scholar
  27. Fujiwara, Y., and Soda, J. (1990).Progress of Theoretical Physics,83, 733.Google Scholar
  28. Gegenberg, J., Kelly, P. F., Mann, P. B., and Vincent, D. (1988).Physical Review D,37, 3463.Google Scholar
  29. Giddings, S., Abott, J., and Kuchar, K. (1984).General Relativity and Gravitation,16, 751.Google Scholar
  30. Goldstein, H. (1980).Classical Mechanics, 2nd ed., Addison-Wesley, Reading, Massachusetts, p. 60.Google Scholar
  31. Gott III, J. R. (1985).Astrophysical Journal,288, 422.Google Scholar
  32. Gott III, J. R., and Alpert, M. (1984).General Relativity and Gravitation,16, 243.Google Scholar
  33. Gott III, J. R., Simon, J. Z., and Alpert, M. (1986).General Relativity and Gravitation,18, 1019.Google Scholar
  34. Grignani, G., and Lee, C. (1989).Annals of Physics,196, 386.Google Scholar
  35. Hall, G. S., Morgan, T., and Perjes, Z. (1987).General Relativity and Gravitation,19, 1137.Google Scholar
  36. Ishida, K., Kim, C. B., Yoshida, K. (1990).Progress of Theoretical Physics,84, 172.Google Scholar
  37. Jackiw, R. (1985).Nuclear Physics B,252, 343.Google Scholar
  38. Jackiw, R. (1990). Topics in planar physics, inPhysics, Geometry and Topology, H. C. Lee, ed., Plenum Press, New York.Google Scholar
  39. Katanaev, M. O., and Volovich, I. V. (1990).Annals of Physics,197, 1.Google Scholar
  40. Kelly, P. F., and Mann, R. B. (1991).Physical Review D,43, 1839.Google Scholar
  41. Keszthelyi, B., Piard, E., and Ramond, R. (1991).Journal of Mathematical Physics,32, 210.Google Scholar
  42. Linet, B. (1990).General Relativity and Gravitation,22, 469.Google Scholar
  43. Mann, R. B. (1991).Foundations of Physics Letters,4, 425.Google Scholar
  44. Mann, R. B., Shiekh, A., and Tarasov, L. (1990).Nuclear Physics B,341, 134.Google Scholar
  45. Mann, R. B., Morsink, S. M., Sikkema, A. E., and Steele, T. G. (1991).Physical Review D,43, 3948.Google Scholar
  46. McWittie, G. C. (1929).Proceedings of the Royal Society of London,124, 366.Google Scholar
  47. Melvin, M. A. (1986).Classical and Quantum Gravity,3, 117.Google Scholar
  48. Menotti, M., and Seminara, D. (1991).Annals of Physics,208, 449.Google Scholar
  49. Misner, C. W., Thorne, K., and Wheeler, J. A. (1973).Gravitation, Freeman, San Francisco, p. 1108.Google Scholar
  50. Mohammedi, N. (1990).Modern Physics Letters,5, 1251.Google Scholar
  51. Nutku, Y., and Baekler, P. (1989).Annals of Physics,195, 16.Google Scholar
  52. Ortiz, M. E. (1990a).Annals of Physics,200, 345.Google Scholar
  53. Ortiz, M. E. (1990b).Classical and Quantum Gravity,7, L9.Google Scholar
  54. Ortiz, M. E. (1990c).Classical and Quantum Gravity,7, 1835.Google Scholar
  55. Percacci, R., Sodano, P., and Vuorio, I. (1987).Annals of Physics,176, 344.Google Scholar
  56. Sanches, N. (1986).Nuclear Physics B,266, 487.Google Scholar
  57. Schmidt, H. J. (1991).Journal of Mathematical Physics,32, 1562.Google Scholar
  58. Sikkema, A. E., and Mann, R. B. (1991).Classical and Quantum Gravity,8, 219.Google Scholar
  59. Soda, J. (1990).Progress of Theoretical Physics,83, 805.Google Scholar
  60. Staruszkiewicz, A. (1963).Acta Physics Polonica,24, 735.Google Scholar
  61. Stephani, H. (1982).General Relativity, Cambridge University Press, Cambridge.Google Scholar
  62. Takagi, S. (1989).Progress of Theoretical Physics Letters,82, 471.Google Scholar
  63. Vilenkin, A. (1983).Physics Letters,133B, 117.Google Scholar
  64. Vurio, I. (1985).Physics Letters,163B, 91.Google Scholar
  65. Waelbroeck, H. (1991).General Relativity and Gravitation,23, 219.Google Scholar
  66. Ward, R. S. (1990).Classical and Quantum Gravity,7, L95.Google Scholar
  67. Weinberg, S. (1972).Gravitation and Cosmology, Wiley, New York, pp. 142–146.Google Scholar
  68. Williams, J. G. (1991).General Relativity and Gravitation,23, 181.Google Scholar
  69. Xu, K. W., and Zhu, C. J. (1991).International Journal of Modern Physics,6A, 2331.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Ø. Grøn
    • 1
    • 2
  • E. Eriksen
    • 1
  1. 1.Department of PhysicsUniversity of OsloOslo 3Norway
  2. 2.Oslo College of EngineeringOslo 2Norway

Personalised recommendations