Nonvacuum taub-type cosmological model

  • M. Carmeli
  • R. Manor
Article
  • 31 Downloads

Abstract

The Einstein universe is a simple model describing a static cosmological spacetime, having a constant radius and a constant curvature, and, as is well known, it does not describe our universe. We propose a model which is an extension of Einstein's. Our metric, havingR × S3 topology, describes a nonisotropic homogeneous closed (finite) universe of Bianchi type IX. This metric is similar to that of Taub, but is simpler. Unlike the Taub solution (which is a cosmological extension of the NUT solution), however, the universe described by our metric contains matter. Like the Taub metric, our metric has two positive constants (τ, T). The gravitational red shift calculated from our metric is given. Similarly to the Schwarzschild metric, which has a “singularity” atr = 2m, this metric has the same kind of “singularity” att = 2τ. The maximal extension of the coordinates in our metric is fairly analogous to that of the Schwarzschild metric.

Keywords

Field Theory Elementary Particle Simple Model Quantum Field Theory Positive Constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmeli, M. (1977).Group Theory and General Relativity, McGraw-Hill, New York.Google Scholar
  2. Carmeli, M. (1982).Classical Fields: General Relativity and Gauge Theory, Wiley, New York.Google Scholar
  3. Carmeli, M., and Charach, Ch. (1984).Foundations of Physics,14, 963.Google Scholar
  4. Carmeli, M., Charach, Ch., and Feinstein, A. (1983).Annals of Physics,150, 392.Google Scholar
  5. Carmeli, M., Charach, Ch., and Malin, S. (1981).Physics Reports,76, 79.Google Scholar
  6. Goldstein, H. (1965).Classical Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  7. Guth, A. H. (1981).Physical Review D,23, 347.Google Scholar
  8. Landau, L. D., and Lifshitz, E. M. (1975).The Classical Theory of Fields, Pergamon, Oxford.Google Scholar
  9. Linde, A. D. (1982).Physics Letters B,108, 389.Google Scholar
  10. MacCallum, M. A. H. (1979). Anisotropic and inhomogeneous cosmologies, inGeneral Relativity, S. W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge.Google Scholar
  11. MacCallum, M. A. H. (1984). InSolutions of Einstein Equations: Techniques and Results, C. Hoenselaers and W. Dietz, eds., Springer-Verlag, Berlin.Google Scholar
  12. Misner, C. W. (1969).Physical Review Letters,22, 1071.Google Scholar
  13. Misner, C. W. (1970). Classical and quantum dynamics of a closed universe, inRelativity, M. Carmeli, S. I. Fickler, and L. Witten, eds., Plenum Press, New York.Google Scholar
  14. Newman, E. T., Tamburino, L., and Unti, T. (1963).Journal of Mathematical Physics,9, 915.Google Scholar
  15. Ozsvàth, I., and Schücking, E. L. (1969).Annals of Physics,55, 166.Google Scholar
  16. Ryan, M. P., and Shepley, L. C. (1975).Homogeneous Relativistic Cosmologies, Princeton University Press, Princeton, New Jersey.Google Scholar
  17. Taub, A. H. (1951).Annals of Mathematics,53, 472.Google Scholar
  18. Weinberg, S. (1972).Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. Carmeli
    • 1
  • R. Manor
    • 1
  1. 1.Center for Theoretical PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations