Painlevé analysis and hamiltonian structure of a new space-dependent KdV equation

  • S. Purkait
  • A. Roy Chowdhury
Article
  • 35 Downloads

Abstract

We deduce the Lax pair for a new space-dependent KdV equation,\(u_t = \tfrac{5}{4}\left( {u_{xxx} + 6uu_x } \right) + {{\eta u_x } \mathord{\left/ {\vphantom {{\eta u_x } {x^2 + {{\beta u} \mathord{\left/ {\vphantom {{\beta u} {x^3 }}} \right. \kern-\nulldelimiterspace} {x^3 }}}}} \right. \kern-\nulldelimiterspace} {x^2 + {{\beta u} \mathord{\left/ {\vphantom {{\beta u} {x^3 }}} \right. \kern-\nulldelimiterspace} {x^3 }}}}\), via the technique of Painlevé analysis. From it, infinitely many conservation laws are deduced and the symplectic structure is obtained.

Keywords

Field Theory Elementary Particle Quantum Field Theory Symplectic Structure Hamiltonian Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bluman, G., and Cole, J. D. (1974).Similarity Methods for Differential Equations, Springer-Verlag.Google Scholar
  2. Ince, D. (1935).Ordinary Differential Equations, Dover, New York.Google Scholar
  3. Nakamura, A., and Chen, H. H. (1981).Journal of the Physical Society of Japan,50, 711.Google Scholar
  4. Roy Chowdhury, A., and Mahato, G. (1982).Letters in Mathematical Physics,6, 423.Google Scholar
  5. Weiss, J. (1983).Journal of Mathematical Physics,24, 1405.Google Scholar
  6. Weiss, J. (1984).Journal of Mathematical Physics,25, 13.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • S. Purkait
    • 1
  • A. Roy Chowdhury
    • 1
  1. 1.High Energy Physics Division, Department of PhysicsJadavpur UniversityCalcuttaIndia

Personalised recommendations