Advertisement

International Journal of Theoretical Physics

, Volume 29, Issue 3, pp 311–337 | Cite as

Nonlocal stochastic quantization of scalar electrodynamics

  • M. Dineykhan
  • Kh. Namsrai
Article

Abstract

Quantization of the electromagnetic interactions of scalar charged particles is considered within the stochastic Langevin and Schwinger-Dyson equations with nonlocal white noise. Fulfillment of the gauge-invariant condition in such a scheme is studied in detail. Matrix elements of the vacuum polarization and self-energy diagrams of the scalar electrodynamics are calculated explicitly, which reduce to usual nonlocal scalar electrodynamic results.

Keywords

Field Theory Matrix Element Elementary Particle Quantum Field Theory White Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfaro, J., and Sakita, B. (1983.Physics Letters B,121, 339.Google Scholar
  2. Batrouni, G. G.,et al. (1985).Physical Review D,32, 2736.Google Scholar
  3. Bern, Z.,et al. (1987a).Nuclear Physics B,284, 35.Google Scholar
  4. Bern, Z.,et al. (1987b).Nuclear Physics B,284, 92.Google Scholar
  5. Chan, H. S., and Halpern, M. B. (1987).Zeitschrift für Physik C,36, 669.Google Scholar
  6. Dineykhan, M., and Namsrai, Kh. (1988). Nonlocality and stochastic quantization of field theory, Preprint JINR E-88-557, Dubna, USSR.Google Scholar
  7. Doering, C. R. (1985).Physical Review Letters,55, 1657.Google Scholar
  8. Efimov, G. V. (1977).Nonlocal Interactions of Quantized Fields, Nauka, Moscow.Google Scholar
  9. Efimov, G. V. (1985).Problems of Quantum Theory of Nonlocal Interactions, Nauka, Moscow.Google Scholar
  10. Floratos, E. G., Iliopaulos, J., and Zwanziger, D. (1984).Nuclear Physics B,241, 221.Google Scholar
  11. Greensite, J., and Halpern, M. B. (1983).Nuclear Physics B,211, 343.Google Scholar
  12. Greensite, J., and Halpern, M. B. (1984).Nuclear Physics B,242, 167.Google Scholar
  13. Halpern, M. B. (1987).Nuclear Physics B (Proc. Suppl.) 1A, 23.Google Scholar
  14. Hamber, H. W., and Heller, U. M. (1984).Physical Review D,29, 928.Google Scholar
  15. Migdal, A. A. (1986).Uspekhi Fizicheskikh Nauk,149, 3.Google Scholar
  16. Niemi, A. J., and Wijewardhana, L. C. R. (1982).Annals of Physics,140, 247.Google Scholar
  17. Parisi, G., and Wu, Y. S. (1981).Science Sinica,24, 483.Google Scholar
  18. Zwanziger, D. (1981).Nuclear Physics B,192, 259.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. Dineykhan
    • 1
  • Kh. Namsrai
    • 1
    • 2
  1. 1.Physics DepartmentSyracuse UniversitySyracuse
  2. 2.Institute of Physics and TechnologyAcademy of Sciences, Mongolian People's RepublicUlan-BatorMongolia

Personalised recommendations