Structural Chemistry

, Volume 2, Issue 1, pp 41–46 | Cite as

On the thermochemistry of intercalation of n-alkylamines into α-titanium hydrogenphosphate

  • Claudio Airoldi
  • Severino F. de Oliveira


Lamellarα-titanium hydrogenphosphate (α-TiP) suspended in water or 1,2-dichloroethane (dce) intercalates ≈7.70 meq g1 ofn-alkylamines (C1-C4), as determined by potentiometry and thermogravimetry. The thermal decomposition of the intercalates takes place in three stages: dehydration, removal of amines, and condensation of the hydrogenphosphate to pyrophosphate. The increase in theα-TiP interlayer distance (7.56×102 pm) during the intercalation was followed by x-ray powder diffraction. The standard enthalpy (δrH m o ) involved in the overall reaction O3PO-H + RNH2→ O3P-O+H3NR, which was determined by reaction-dissolution calorimetry, correlates linearly with the number of carbons in the alkyl chain and with the interlamellar distance. An intercalation mechanism is proposed, starting from the amine protonation by POH groups and its insertion between the sheets. An increase in enthalpy of −2.67 and +2.56 kJ mol−1 or −1.24 and +1.20 kJ mol−1/102 pm for each CH2 group of then-alkyl chain in dce and water, respectively, for this series of amines is proposed.


Physical Chemistry Enthalpy Dehydration Calorimetry Thermal Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Costantino, U. InInorganic Ion Exchange Materials; Clearfield, A.; Ed.; CRC Press: Boca Raton, FL, Ch. 3, p. 111,1982.Google Scholar
  2. 2.
    Legrand, A. P.; Facchini, L.; Kaiser, P.; Tuel, A.Ann. Chim. Fr.,1988,13, 1.Google Scholar
  3. 3.
    Kijina, T.; Nakazawa, H.; Koboyashi, M.Bull. Chem. Soc. Jpn.,1988,61, 4277.Google Scholar
  4. 4.
    Soma, Y.; Soma, M.; Furukawa, Y.; Harada, I.Clays Clay Minerals,1987,35, 53.Google Scholar
  5. 5.
    Borel, M. M.; Grandin, A.; Raveau, B.Eur. J. Solid State Inorg. Chem.,1986,25, 135.Google Scholar
  6. 6.
    Castellón, E. R.; Garcia, A. R.; Braque, S.Inorg. Chem.,1985,24, 1187.Google Scholar
  7. 7.
    Lara, M. M.; Real, L. M.; Lopez, A. J.; Gamez, S. B.; Garcia, A. R.Mat. Res. Bull.,1986,21, 13.Google Scholar
  8. 8.
    Clearfield, A.; Tindwa, R. M.J. Inorg. Nucl. Chem.,1979,41, 871.Google Scholar
  9. 9.
    Costantino, U.J. Chem. Soc., Dalton Trans., 1979, 402.Google Scholar
  10. 10.
    Ferragina, C; Massucci, M. A.; Patrono, P.; La Ginestra, A.; Tomlinson, A. A. G.J. Chem. Soc., Dalton Trans.,1988, 851.Google Scholar
  11. 11.
    Johnson, J. W.; Jacobson, A. J.; Brody, J. F.; Rich, S. M.Inorg. Chem.,1982,21, 3820.Google Scholar
  12. 12.
    Yamanaka, S.; Koizumi, M.Clays Clay Minerals,1975,23, 477.Google Scholar
  13. 13.
    Behrendt, D.; Beneke, K.; Lagaly, G.Angew. Chem. Int. Ed. Engl.,1976,15, 544.Google Scholar
  14. 14.
    Gupta, J. P.; Nowell, D. V.J. Chem. Soc., Dalton Trans.,1979, 1178.Google Scholar
  15. 15.
    Alberti, G.; Galli, P. C.; Costantino, U.; Torracca, E.J. Inorg. Nucl. Chem.,1967,29, 571.Google Scholar
  16. 16.
    Suarez, M.; Garcia, J. R.; Rodriguez, J.J. Phys. Chem.,1984,88, 159.Google Scholar
  17. 17.
    Alberti, G.; Costantino, U.; Luciani, M. L.J. Inorg. Nucl. Chem.,1979,41, 643.Google Scholar
  18. 18.
    Frianeza, T. N.; Clearfield, A.J. Catal.,1984,85, 398.Google Scholar
  19. 19.
    Michel, E.; Weiss, A.Z. Naturforsch.,1965,20, 1307.Google Scholar
  20. 20.
    Varshney, K. G.; Premadas, A.Sep. Sci. Technol,1981,16, 793.Google Scholar
  21. 21.
    Airoldi, C.; Souza, A. G. de JChem. Thermodynamics,1989,21, 283.Google Scholar
  22. 22.
    Airoldi, C.; Santos, L. S., Jr.Thermochim. Acta,1986,104, 111.Google Scholar
  23. 23.
    Jorge, R. A.; Airoldi, C.; Chagas, A. P.J. Chem. Soc., Dalton Trans.,1978, 1102.Google Scholar
  24. 24.
    Clearfield, A.; Pack, S. P.J. Inorg. Nucl. Chem.,1975,37, 1283.Google Scholar
  25. 25.
    Clearfield, A.; Stynes, J. A.J. Inorg. Nucl. Chem.,1964,26, 117.Google Scholar
  26. 26.
    Herbell, J. D.; Specht, S.; Born, H. J.Thermochim. Acta,1977,20, 87.Google Scholar
  27. 27.
    Gutmann, V.Coordination Chemistry in Non-Aqueous Solutions; Springer: New York,1968.Google Scholar
  28. 28.
    Alberti, G.; Bertrami, R.; Costantino, U.; Gupta, J. P.J. Inorg. Nucl. Chem.,1977,39, 1057.Google Scholar
  29. 29.
    Albertsson, J.; Oskarson, A.; Tellgren, R.; Thomas, J. O.J. Phys. Chem.,1977,81, 1574.Google Scholar
  30. 30.
    Christensen, J. J.; Hansen, L. D.; Izatt, R. M.Handbook of Proton Ionization Heats and Related Thermodynamics Quantities; John Wiley & Sons, London,1976.Google Scholar

Copyright information

© VCH Publishers, Inc. 1991

Authors and Affiliations

  • Claudio Airoldi
    • 1
  • Severino F. de Oliveira
    • 1
  1. 1.Instituto de QuímicaUniversidade Estadual de CampinasCampinas, Sáo PauloBrazil

Personalised recommendations