Advertisement

Structural Chemistry

, Volume 2, Issue 6, pp 567–573 | Cite as

Effect of the amine group on relative bond strengths in cubane and azacubanes

  • Jane S. Murray
  • Jorge M. Seminario
  • Peter Politzer
Article

Abstract

We have carried out an ab initio self-consistent-field molecular orbital study of the structures and relative bond strengths of some monoamine derivatives of cubane, azacubane, and 1,3-diazacubane. Our focus has been on the effect of the NH2 group on the strengths of the endocyclic strained bonds in these molecules, and, in particular, on the conformation dependence of this effect. Our results show a consistent bond-weakening observed in one [and only one] C-C or C-N bond adjacent to the site of NH2 substitution. We find that the particular bond that is weakened is in all cases essentially coplanar with the C-NH2 bond and the position of the most negative electrostatic potential of the amine nitrogen. This direction-specific bond-weakening is viewed as an example of the anomeric effect.

Keywords

Nitrogen Physical Chemistry Bond Strength Monoamine Amine Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eaton, P. E.; RaviShankar, B. K.; Price, G. D.; Pluth, J. J.; Gilbert, E. E.; Alster, J.; Sandus, O.J. Org. Chem.,1984,49, 185.Google Scholar
  2. 2.
    Griffin, G. W.; Umrigar, P. P.; Lankin, D. C.; Stevens, E. D.; Majeste, R. J.Abstracts of Papers, 189th National Meeting of the American Chemical Society, Miami Beach, FL, April 28–May 3,1985; American Chemical Society: Washington, DC, Abstr. ORGN-183,1985.Google Scholar
  3. 3.
    Eaton, P. E., Castaldi, G.J. Am. Chem. Soc.,1985,107, 724.Google Scholar
  4. 4.
    Eaton, P. E.; Cunkle, G. T.Tetrahedron Lett.,1986,27, 6055.Google Scholar
  5. 5.
    Eaton, P. E.; Cunkle, G. T.; Marchioro, G.; Martin, R. M.J. Am. Chem. Soc.,1987,109, 948.Google Scholar
  6. 6.
    Jayasuriya, K.; Alster, J.; Politzer, P.J. Org. Chem.,1987,52, 2306.Google Scholar
  7. 7.
    Marchand, A. P.Tetrahedron,1988,44, 2377.Google Scholar
  8. 8.
    Griffin, G. W.; Marchand, A. P.Chem. Rev.,1989,89, 997.Google Scholar
  9. 9.
    Moriary, R. M.; Khosrowshahi, J. S.; Miller, R. S.; FlippenAndersen, J.; Gilardi, R.J. Am. Chem. Soc.,1989,111, 8943.Google Scholar
  10. 10.
    Politzer, P.; Kirschenheuter, G. P.; Miller, R. S.J. Phys. Chem.,1988,92, 1436.Google Scholar
  11. 11.
    Grodzicki, M.; Seminario, J. M.; Politzer, P.J. Phys. Chem.,1990,94, 624.Google Scholar
  12. 12.
    Murray, J. S.; Redfern, P. C.; Seminario, J. M.; Politzer, P.J. Phys. Chem.,1990,94, 2320.Google Scholar
  13. 13.
    Murray, J. S.; Seminario, J. M.; Lane, P.; Politzer, P.J. Mol. Struct. (THEOCHEM),1990,207, 193.Google Scholar
  14. 14.
    Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A.J. Am. Chem. Soc.,1970,92, 4796.Google Scholar
  15. 15.
    Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A.Ab Initio Molecular Orbital Theory; John Wiley & Sons, New York,1986.Google Scholar
  16. 16.
    Dewar, M. J. S.J. Am. Chem. Soc.,1984,106, 669.Google Scholar
  17. 17.
    Politzer, P.; Domelsmith, L. N.; Sjoberg, P.; Alster, J.Chem. Phys. Lett.,1982,92, 366.Google Scholar
  18. 18.
    Politzer, P.; Abrahmsen, L.; Sjoberg, P.; Laurence, P. R.Chem. Phys. Lett.,1983,102, 74.Google Scholar
  19. 19.
    Politzer, P.; Domelsmith, L. N.; Abrahmsen, L.J. Phys. Chem.,1984,88, 1752.Google Scholar
  20. 20.
    Politzer, P.; Bar-Adon, R.; Miller, R. S.J. Phys. Chem.,1987,91, 3191.Google Scholar
  21. 21.
    Politzer, P.; Murray, J. S. InStructure and Reactivity (Molecular Structure and Energetics); Liebman, J. F., Greenberg, A., Eds.; VCH Publishers: New York,1988, Ch. 1, pp. 1–24.Google Scholar
  22. 22.
    Politzer, P.; Seminario, J. M.J. Phys.Chem.,1989,93, 588.Google Scholar
  23. 23.
    Politzer, P.; Seminario, J. M.J. Phys. Chem.,1989,93, 4742.Google Scholar
  24. 24.
    Seminario, J. M.; Politzer, P.Chem. Phys. Lett.,1989,159, 27.Google Scholar
  25. 25.
    Frisch, M. J.; Head-Gordon, M.; Schlegel, H. B.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R.; Kahn, L. R.; Stewart, J. J. P.; Fluder, E. M.; Topiol, S.; Pople, J. A.GAUSSIAN 88; Gaussian, Inc.; Pittsburgh, PA,1988.Google Scholar
  26. 26.
    Binkley, J. S.; Pople, J. A.; Hehre, W.J. J. Am. Chem. Soc.,1980,102, 939.Google Scholar
  27. 27.
    Boggs, J. E.; Niu, Z. J.Computat. Chem.,1985,6, 46.Google Scholar
  28. 28.
    Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E.J. Am. Chem. Soc.,1979,101, 2550.Google Scholar
  29. 29.
    Pople, J. A.; Seeger, R.J. Chem. Phys.,1975,62, 4566.Google Scholar
  30. 30.
    Murray, J. S.; Redfern, P. C.; Lane, P.; Politzer, P.; Willer, R. L.J. Mol. Struct. (THEOCHEM),1990,207, 177.Google Scholar
  31. 31.
    Politzer, P.; Sukumar, N.; Jayasuriya, K.; Ranganathan, S.J.Am. Chem. Soc.,1988,110, 3425.Google Scholar
  32. 32.
    Murray, J. S.; Sukumar, N.; Ranganathan, S.; Politzer, P.Int. J. Quantum Chem.,1990,37, 611.Google Scholar
  33. 33.
    Politzer, P.J. Chem. Phys. 1969,50, 2780;J. Chem. Phys.,1969,51, 459.Google Scholar
  34. 34.
    Politzer, P.; Ranganathan, S.Chem. Phys. Lett.,1986,124, 527.Google Scholar
  35. 35.
    Parr, R. G.; Borkman, R. F.J. Chem. Phys.,1968,49, 1055.Google Scholar
  36. 36.
    Borkman, R. F.; Simons, G.; Parr, R. G.J. Chem. Phys.,1969,50, 58.Google Scholar
  37. 37.
    Scrocco, E.; Tomasi, J. InTopics in Current Chemistry; Springer-Verlag: Berlin,1973, No. 2, p. 95.Google Scholar
  38. 38.
    Politzer, P.; Daiker, K. C. InThe Force Concept in Chemistry; Deb, B. M., Ed.; Van Nostrand Reinhold: New York,1981, p. 294.Google Scholar
  39. 39.
    Politzer, P.; Truhlar, D. G., Eds.,Chemical Applications of Atomic and Molecular Electrostatic Potentials; Plenum Press: New York,1981.Google Scholar
  40. 40.
    Fleischer, E. B.J. Am. Chem. Soc.,1964,86, 3889.Google Scholar
  41. 41.
    Schulman, J. M.; Fischer, C. R.; Solomon, P.; Venanzi, T. J.J. Am. Chem. Soc.,1978,100, 2943.Google Scholar
  42. 42.
    Schubert, W.; Yoshimine, M.; Pacanasky, J.J. Phys. Chem.,1981,85, 1340.Google Scholar
  43. 43.
    Almlof, J.; Jonvik, T.Chem. Phys. Lett.,1982,92, 267.Google Scholar
  44. 44.
    Ritchie, J. P.; Bachrach, S. M.J. Comput. Chem.,1987,8, 499.Google Scholar
  45. 45.
    Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R.J. Chem. Soc. Perkin Trans., II,1987, S1.Google Scholar
  46. 46.
    Lemieux, R. U.; Chu, N. J.,Abstr. Am. Chem. Soc. Meet., 1958,133, 31N.Google Scholar
  47. 47.
    Szarek, W. A.; Horton, D., Eds.,Anomeric Effect, Origins and Consequences; ACS Symposia Series; American Chemical Society: Washington, DC,1979, p. 87.Google Scholar
  48. 48.
    Romers, C.; Altona, C.; Buys, H. R.; Havinga, E.Top. Stereochem.,1969,4, 39.Google Scholar

Copyright information

© VCH Publishers, Inc 1991

Authors and Affiliations

  • Jane S. Murray
    • 1
  • Jorge M. Seminario
    • 1
  • Peter Politzer
    • 1
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations