Skip to main content
Log in

Delinearization of quantum logic

  • Introduction
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The algebraic structure of the set of elementary observables of a delinearized quantal theory is described. As the delinearization procedure provides a kind of classical representation for any quantal theory, its relation to the traditional hypothesis of hidden variables is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alfsen, E. M. (1971).Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin.

    Google Scholar 

  • Alfsen, E. M., and Shultz, F. W. (1976).Non-Commutative Spectral Theory for Affine Function Spaces on Convex Sets, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Alfsen, E. M., and Shultz, F. W. (1979).Proceedings of the London Mathematical Society,37, 497–516.

    Google Scholar 

  • Asimov, L., and Ellis, A. J. (1980).Convexity Theory and Its Applications in Functional Analysis, Academic Press, London.

    Google Scholar 

  • Beltrametti, E. G., Cassinelli G. (1976).Nuovo Cimento,6, 321–404.

    Google Scholar 

  • Bugajski, S. (1981). The inner language of operational quantum mechanics, inCurrent Issues in Quantum Logic, E. Beltrametti and B. C. van Fraassen, eds., Plenum Press, New York, pp. 283–302.

    Google Scholar 

  • Bugajski, S. (1982).Studia Logica,41, 311–316.

    Google Scholar 

  • Bugajski, S. (1982).Studia Logica,41, 311–316.

    Google Scholar 

  • Bugajski, S. (1983).Studia Logica,42, 81–88.

    Google Scholar 

  • Bugajski, S. (1991).International Journal of Theoretical Physics,30, 961–971.

    Google Scholar 

  • Bugajski, S. (1993). Classical frames for a quantum theory — A bird's-eye view, to be published.

  • Busch, P., Bugajski, S., Cassinelli, G., Lahti, P. J., and Quadt, R. (1993). Sigma-convex structures and classical embeddings of quantum mechanical state spaces, to be published.

  • Cook, T. A. (1978).International Journal of Theoretical Physics,17, 941–955.

    Google Scholar 

  • Davies, E. B. (1972).Journal of Mathematical Physics,13, 39–41.

    Google Scholar 

  • Fischer, H. R., and Rüttimann, G. T. (1978). The geometry of the state space, inMathematical Foundations of Quantum Theory, A. R. Marlow, ed., Academic Press, New York, pp. 153–176.

    Google Scholar 

  • Lahti, P. J., and Bugajski, S. (1985).International Journal of Theoretical Physics,24, 1051–1080.

    Google Scholar 

  • Primas, H. (1981).Chemistry, Quantum Mechanics and Reductionism, Springer-Verlag, Berlin.

    Google Scholar 

  • Rasiowa, H. (1974).An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam.

    Google Scholar 

  • Singer, M., and Stulpe, W. (1993). Phase-space representations of general statistical physical theories, to be published.

  • Van Fraassen, B. C. (1971).Formal Semantics and Logic, Macmillan, New York.

    Google Scholar 

  • Zierler, N., and Schlesinger, M. (1965).Duke Mathematical Journal,32, 251–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugajski, S. Delinearization of quantum logic. Int J Theor Phys 32, 389–398 (1993). https://doi.org/10.1007/BF00673350

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00673350

Navigation