International Journal of Theoretical Physics

, Volume 18, Issue 2, pp 107–112 | Cite as

A note on conformal field equations

  • A. Z. Jadczyk
Article
  • 37 Downloads

Abstract

Conformal geometry is more fundamental than a Riemannian one. Whereas Riemannian geometry determines lengths and angles, a conformal one determines only angles and ratios of length. Equivalently, conformal geometry of space-time determines light cones, or causal structure. No length scale isa priori distinguished. It can be distinguished onlya posteriori, given a particular solution of matter field equations. Einstein's field equations of gravitation can be thought of as describing interaction of causal structure with a matter described by a real scalar massless field of weight 1/4. Electromagnetic field equations need precisely a conformal structure. One can also write down field equations for a spin-1/2 Dirac massless field, given information about light cones only. The energy-momentum tensor density is obtained by vierbeim variations.

Keywords

Field Theory Quantum Field Theory Electromagnetic Field Field Equation Light Cone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gürsey, F. (1956).Nuovo Cimento,III, 988.Google Scholar
  2. Gürsey, F. (1963).Ann. Phys. N. Y.,24, 211.Google Scholar
  3. Jadczyk, A. Z. (1979).Bull. Pol. Acad. Sci., Fiz-Astr., XXVII(I), no. 2 (to appear).Google Scholar
  4. Kobayashi, S. (1972).Transformation Groups in Differential Geometry, Springer Verlag, New York.Google Scholar
  5. Penrose, R. (1965).Proc. R. Soc. London Ser. A,284, 159.Google Scholar
  6. Post, E. J. (1962).Formal Structure of Electromagnetism, North-Holland, Amsterdam.Google Scholar
  7. Sigal, R. F. (1974).Int. J. Theor. Phys.,11, 45.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. Z. Jadczyk
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations