International Journal of Theoretical Physics

, Volume 30, Issue 4, pp 537–545 | Cite as

Two-body problem for Weber-like interactions

  • R. A. Clemente
  • A. K. T. Assis


The problem of two moving bodies interacting through a Weber-like force is presented. Trajectories are obtained analytically once relativistic and quantic considerations are neglected. The main results are that in the case of limited trajectories, in general, they are not closed and in the case of open trajectories, the deflection angles are not the same for similar particles with given energies and angular momenta but opposite potentials. This last feature suggests the possibility of a direct verification of the validity of Weber's law of force for electromagnetic interactions.


Field Theory Angular Momentum Elementary Particle Quantum Field Theory Moving Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelkader, M. A. (1968).International Journal of Electronics,25, 177.Google Scholar
  2. Ampère, A. M. (1825).Memoires de l'Academie des Sciences,6, 175.Google Scholar
  3. Assis, A. K. T. (1989a).Physics Letters A,136, 277.Google Scholar
  4. Assis, A. K. T. (1989b).Foundations of Physics Letters,2, 301.Google Scholar
  5. Assis, A. K. T., and Clemente, R. A. (1990).International Journal of Theoretical Physics, to appear.Google Scholar
  6. Brown, G. B. (1955).Proceedings of the Physical Society B 68, 672.Google Scholar
  7. Gauss, C. F. (1867).Werke (Göttingen Edition), Vol. 5, p. 629.Google Scholar
  8. Graneau, P. (1982).Nature,295, 311.Google Scholar
  9. Graneau, P. (1983).Physics Letters A,97, 253.Google Scholar
  10. Graneau, P. (1985).Ampère-Neumann Electrodynamics of Metals, Hadronic Press, Nonantum.Google Scholar
  11. Graneau, P. (1989a).Electronics and Wireless World,95, 556.Google Scholar
  12. Graneau, P. (1989b).Journal of Physics D,22, 1083.Google Scholar
  13. Graneau, P., and Graneau, P. N. (1985).Applied Physics Letters,46, 468.Google Scholar
  14. Moon, P., and Spencer, D. E. (1954).American Journal of Physics,22, 120.Google Scholar
  15. Moyssides, P. G., and Pappas, P. T. (1986).Journal of Applied Physics,59, 19.Google Scholar
  16. Nasilowski, J. (1985).Physics Letters A,111, 315.Google Scholar
  17. O'Rahilly, A. (1965).Electromagnetic Theory, Dover, New York, Vol. II, p. 536.Google Scholar
  18. Pappas, P. T. (1983).Nuovo Cimenta B,76, 189.Google Scholar
  19. Ritz, W. (1911).Gesammelte Werke, Paris.Google Scholar
  20. Symon, K. R. (1978).Mechanics, Addison-Wesley, Amsterdam, p. 128.Google Scholar
  21. Warburton, F. W. (1946).Physical Review,69, 40.Google Scholar
  22. Weber, W. (1846).Abhandlungen Leibnizen Gesellschaft (Leipzig), p. 316.Google Scholar
  23. Wesley, J. P. (1987a).Speculations in Science and Technology,10, 47.Google Scholar
  24. Wesley, J. P. (1987b). InProgress in Space-Time Physics, Benjamin Wesley, p. 170.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • R. A. Clemente
    • 1
  • A. K. T. Assis
    • 1
    • 2
  1. 1.Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinas, SPBrazil
  2. 2.Departamento de Raíos Cósmicos e CronologiaBrazil

Personalised recommendations