Skip to main content
Log in

Abstract

In canonical quantum gravity certain topological properties of 3-manifolds are of interest. This article gives an account of those properties which have so far received sufficient attention, especially those concerning the diffeomorphism groups of 3-manifolds. We give a summary of these properties and list some old and new results concerning them. The appendix contains a discussion of the group of large diffeomorphisms of thel-handle 3-manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aneziris, C., Balachandran, A. P., Bourdeau, M., Jo, S., Ramadas, T. R., and Sorkin, R. (1989),International Journal of Modern Physics A,4, 5459–5510.

    Google Scholar 

  • Coxeter, H. S. M. and Moser, W. O. J. (1965).Generators and Relations for Discrete Groups, 2nd edition, Springer-Verlag, Berlin, Göttingen, Heidelberg, New York.

    Google Scholar 

  • Friedman, J., and Sorkin, R. (1980).Physical Review Letters,44, 1100–1103.

    Google Scholar 

  • Gibbons, G. W., and Hawking, S. W. (1992).Communications in Mathematical Physics,148, 345–352.

    Google Scholar 

  • Giulini, D. (1992a). On the configuration space topology in general relativity, Preprint, Freiburg THEP-92/32 and gr-qc 9301020, submitted for publication.

  • Giulini, D. (1992b).Communications in Mathematical Physics 148, 353–357.

    Google Scholar 

  • Giulini, D. (1993). Quantum mechanics on spaces with finite non-Abelian fundamental group, in preparation.

  • Giulini, D., and Louko, J. (1992).Physical Review D,46, 4355–4364.

    Google Scholar 

  • Gromov, M., and Lawson, B. (1983).Institut des Hautes Études Scientifique Publicationes Mathematiques,58, 294–408.

    Google Scholar 

  • Hartle, J., and Witt, D. (1988).Physical Review D,37, 2833–2836.

    Google Scholar 

  • Hempel, J. (1976).3-Manifolds, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Hendriks, H., and Laudenbach, F. (1984).Topology,23, 423–443.

    Google Scholar 

  • Hendriks, H., and McCullough, D. (1987).Topology and its Application,26, 25–31.

    Google Scholar 

  • Isham, C. J. (1981).Physics Utters B,106, 188–192.

    Google Scholar 

  • Laudenbach, F. (1974).Asterisque,12, 1–137.

    Google Scholar 

  • Lee, K. B., Shin, J., and Yokura, S. (1993). Free actions of finite Abelian groups on the 3-torus, University of Oklahoma preprint.

  • McCullough, D. (1986).Geometric and Algebraic Topology (Warsaw),18, 61–76.

    Google Scholar 

  • Milnor, J. (1971).Introduction to Algebraic K-Theory. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Orlik, P. (1972).Seifert Manifolds, Springer-Verlag, Berlin.

    Google Scholar 

  • Rourke, C., and de Sá, C. (1979).Bulletin of the American Mathematical Society, (New Series)1, 251–254.

    Google Scholar 

  • Sorkin, R. (1989). Classical topology and quantum phases: Quantum geons, inGeometrical and Algebraic Aspects of Nonlinear Field Theory, S. De Filippo, M. Marinaro, G. Marmo, and G. Vilasi, eds., Elsevier, North-Holland.

    Google Scholar 

  • Thomas, C. B. (1986).Elliptic Structures on 3-Manifolds, Cambridge University Press, Cambridge.

    Google Scholar 

  • Thomas, C. B. (1988).Bulletin of the London Mathematical Society,20, 65–67.

    Google Scholar 

  • Witt, D. (1986).Journal of Mathematical Physics,27, 573–592.

    Google Scholar 

  • Witt, D. (1987). Topological obstructions to maximal slices, Santa Barbara preprint, UCSB-1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giulini, D. 3-Manifolds for relativists. Int J Theor Phys 33, 913–930 (1994). https://doi.org/10.1007/BF00672824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00672824

Keywords

Navigation