Advertisement

Structural Chemistry

, Volume 3, Issue 4, pp 277–289 | Cite as

Electronic absorption and fluorescence spectra and excited singlet-state dipole moments of biologically important pyrimidines

  • Cyril Párkányi
  • Christian Boniface
  • Jean-Jacques Aaron
  • Mame Diabou Gaye
  • Ratna Ghosh
  • László von Szentpály
  • Krishnan S. RaghuVeer
Article

Abstract

Electronic absorption and fluorescence emission spectra of several biologically important pyrimidines were measured at room temperature (298 K) in the following solvents: dioxane, ethyl ether, chloroform, ethyl acetate, 1-butanol, 2-propanol, methanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide. The compounds studied were uracil, thymine, cytosine, 5-fluorouracil, 5-chlorouracil, 5-bromouracil, 5-iodouracil, 2-thiouracil, barbituric acid, and orotic acid. In combination with the ground-state dipole moments of the above compounds, these spectral data were used to determine their lowest excited singlet-state dipole moments using the soivatochromic method. The effects of the solvent upon the spectral properties and of the structure upon the ground and excited singlet-state dipole moments are discussed. For most of the compounds, the excited singlet-state dipole moments are higher than their ground-state counterparts.

The theoretical dipole moments for all the pyrimidines listed above, as well as for pyrimidine, alloxan, and uracil-5-carboxylic acid, were calculated by two methods. One approach involved a combination of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment and the σ-contribution obtained as a vector sum of the σ-bond moments and group moments. The second set of theoretical values was obtained by the CNDO/2 method. The results were compared with the experimental dipole moments.

Keywords

Dipole Moment Pyrimidine Uracil Barbituric Thymine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amos, A. T.; Burrows, B. L.Adv. Quant. Chem. 1973,7, 289.Google Scholar
  2. 2.
    Nicol, M. F.Appl. Spectrosc. Rev. 1974,8, 183.Google Scholar
  3. 3.
    Rao, C. N. R.; Singh, S.; Senthilnathan, V. P.Chem. Soc. Rev. 1976,5, 297.Google Scholar
  4. 4.
    Abe, T.Bull. Chem. Soc. Jpn. 1981,54, 327.Google Scholar
  5. 5.
    Gryczynski, J.; Kawski, A.; Jung, C.; Janic, I.Z. Naturforsch. 1982,37A, 259.Google Scholar
  6. 6.
    Lakowicz, J. R.Principles of Fluorescence Spectroscopy; Plenum Press: New York, NY, 1983; p. 190.Google Scholar
  7. 7.
    Suppan, P.Chem. Phys. Lett. 1983,94, 272.Google Scholar
  8. 8.
    Botrel, A.; Corre, F.; Le Beuze, A.Chem. Phys. 1983,74, 383.Google Scholar
  9. 9.
    Schweizer, K. S.; Chandler, D.J. Chem. Phys. 1983,78, 4118.Google Scholar
  10. 10.
    Baumann, W.Z. Naturforsch. 1983,38A, 995.Google Scholar
  11. 11.
    Bonaccorsi, R.; Cimiraglia, R.; Tomasi, J.J. Mol. Struct. (Theochem) 1984,107, 197.Google Scholar
  12. 12.
    Prabhumirashi, L. S.Spectrochim. Acta 1983,39A, 91.Google Scholar
  13. 13.
    Prabhumirashi, L. S.; Kutty, D. K. N.; Bhide, A. S.Spectrochim. Acta 1983,39A, 663.Google Scholar
  14. 14.
    Prabhumirashi, L. S.; Satpute, R. S.Spectrochim. Acta 1984,40A, 953.Google Scholar
  15. 15.
    Koutek, B.Collect. Czech. Chem. Commun. 1984,49, 1680.Google Scholar
  16. 16.
    Suppan, P.; Guerry-Butty, E.J. Luminescence 1985,33, 335.Google Scholar
  17. 17.
    Abe, T.; Iweibo, I.Bull. Chem. Soc. Jpn. 1985,58, 3415.Google Scholar
  18. 18.
    Johnson, I. D.; Thomas, E. W.; Cundall, R. B.J. Chem. Soc., Faraday Trans. 2 1985,81, 1303.Google Scholar
  19. 19.
    Sharma, A.; Machwe, M. K.Curr. Sci. 1985,54, 1109.Google Scholar
  20. 20.
    Párkányi, C.; Oruganti, S. R.; Abdelhamid, A. O.; von Szentpály, L.; Ngom, B.; Aaron, J. J.J. Mol. Struct. (Theochem) 1986,135, 105.Google Scholar
  21. 21.
    Abdullah, K. A.; Kemp, T. J.J. Photochem. Photobiol. 1986,32, 49.Google Scholar
  22. 22.
    Szmacinski, H.; Janic, I.Acta Phys. Polon. 1986,69, 339.Google Scholar
  23. 23.
    Ayachit, N. H.; Deshpande, D. K.; Shashidhar, M. A.; Rao, K. S.Spectrochim. Acta 1986,42A, 585.Google Scholar
  24. 24.
    Doroshenko, A. O.; Ponomarev, O. A.; Mitina, V. G.Zh. Obshch. Khim. 1986,56, 873.Google Scholar
  25. 25.
    Lami, H.; Glasser, N.J. Chem. Phys. 1986,84, 597.Google Scholar
  26. 26.
    Becker, R. S.; Kogan, G.Photochem. Photobiol. 1980,31, 5.Google Scholar
  27. 27.
    Pullman, B.; Pullman, A. Private communication, cited in:The Purines: Theory and Experiment, Proc. Jerusalem Symp. Chem. Biochem.; Bergmann, E. D.; Pullman, B., Eds.;1972,4, 21.Google Scholar
  28. 28.
    Bergmann, E. D.; Weiler-Feilchenfeld, H. InPhysico-Chemical Properties of Nucleic Acids, Vol. 1; Duchesne, J., Ed.; Academic Press: London, 1973; p. 1; and references therein.Google Scholar
  29. 29.
    De Voe, H.; Tinoco, I.J. Mol. Biol. 1962,4, 500.Google Scholar
  30. 30.
    Berthod, H.; Giessner-Prettre, C.; Pullman, A.Theor. Chim. Acta 1966,5, 53.Google Scholar
  31. 31.
    Lindner, P.; Manne, R.; Martensson, O.Theor. Chim. Acta 1966,5, 406.Google Scholar
  32. 32.
    Imamura, A.; Fujita, H.; Nagata, C.Bull. Chem. Soc. Jpn. 1967,40, 21.Google Scholar
  33. 33.
    Clementi, E.Chem. Rev. 1968,68, 341.Google Scholar
  34. 34.
    Rein, R.; Fukada, N.; Clarke, G. A.; Harris, F. E.J. Theor. Biol. 1968,21, 88.Google Scholar
  35. 35.
    Pullman, A.; Pullman, B.Advan. Quantum Chem. 1968,4, 267.Google Scholar
  36. 36.
    Giessner-Prettre, C.; Pullman, A.Theor. Chim. Acta 1968,9, 279.Google Scholar
  37. 37.
    Pullman, A.; Berthod, H.; Caillet, J.Theor. Chim. Acta 1968,10, 43.Google Scholar
  38. 38.
    Pullman, A.; Kochanski, E.; Gilbert, M.; Denis, A.Theor. Chim. Acta 1968,10, 231.Google Scholar
  39. 39.
    Pullman, A.Ann. N.Y. Acad. Sci. 1969,158, 65.Google Scholar
  40. 40.
    Mély, B.; Pullman, A.Theor. Chim. Acta 1969,13, 278.Google Scholar
  41. 41.
    Bergmann, E. D.; Weiler-Feilchenfeld, H. InThe Purines: Theory and Experiment, Proc. Jerusalem Symp. Chem. Biochem.; Bergmann, E. D.; Pullman, B., Eds.1972,4, 21.Google Scholar
  42. 42.
    Liptay, W. InExcited States, Vol. 1. Lim, E. C., Ed.; Academic Press: New York, 1974; p. 129.Google Scholar
  43. 43.
    Srivastava, S. K.; Mishra, P. C.J. Mol. Struct. 1980,65, 199.Google Scholar
  44. 44.
    Del Bene, J. E.J. Comput. Chem. 1981,2, 251.Google Scholar
  45. 45.
    Aaron, J. J.; Winefordner, J. D.Photochem. Photobiol. 1973,18, 97.Google Scholar
  46. 46.
    Párkányi, C.; Bouin, D.; Shieh, D. C.; Tunbrant, S.; Aaron, J. J.; Tine, A.J. Chim. Phys. 1984,81, 21.Google Scholar
  47. 47.
    Gningue, D.; Aaron, J. J.Talanta 1985,32, 183.Google Scholar
  48. 48.
    Aaron, J. J.; Gaye, M. D.; Párkányi, C.; Cho, N. S.; von Szentpály, L.J. Mol. Struct. 1987,156, 119.Google Scholar
  49. 49.
    Aaron, J. J.; Thiao, P.; Párkányi, C.; Jeffries, III, A. T.; Kalsotra, B. L.Photochem. Photobiol. 1979,29, 839.Google Scholar
  50. 50.
    Vernin, G.; Meyer, M.; Bouscasse, L.; Metzger, J.; Párkányi, C.J. Mol. Struct. 1980,68, 209.Google Scholar
  51. 51.
    Aaron, J. J.; Tine, A.; Villiers, C.; Párkányi, C.; Bouin, D.Croat. Chem. Acta 1983,56, 157.Google Scholar
  52. 52.
    Tine, A.; Aaron, J. J.Can. J. Spectrosc. 1984,29, 121.Google Scholar
  53. 53.
    Aaron, J. J.; Tine, A.; Wojciechowska, M. E.; Párkányi, C.J. Luminescence 1985,33, 33.Google Scholar
  54. 54.
    Aaron, J. J.; Tine, A.; Gaye, M. D.; Párkányi, C.; Boniface, C.; Bieze, T. W. N.Spectrochim. Acta 1991,47A, 419.Google Scholar
  55. 55.
    Párkányi, C.; Boniface, C.; Aaron, J. J.; Meuguelati, F.; Murray, J. S.; Politzer, P.; RaghuVeer, K. S.Proc. Sixth Intl. Conf. Phenothiazines and Struct. Related Psychotropic Drugs, Pasadena, CA, Sept. 11–14, 1990; Krieger Publishing: Melbourne, FL, 1991.Google Scholar
  56. 56.
    Aaron, J. J.; Gaye, M. D.; Párkányi, C.; Boniface, C.; Bieze, T. W. N.; Atik, S. S.; RaghuVeer, K. S.; von Szentpály, L.; Ghosh, R.Pteridines, in press.Google Scholar
  57. 57.
    McRae, E. G.J. Phys. Chem. 1957,61, 562.Google Scholar
  58. 58.
    Suppan, P.J. Chem. Soc. A. 1968, 3125.Google Scholar
  59. 59.
    Suppan, P.; Tsiamis, C.Spectrochim. Acta 1980,36A, 971.Google Scholar
  60. 60.
    Bakhshiev, N. G.Opt. Spektrosk. 1964,16, 821.Google Scholar
  61. 61.
    Kawski, A.; Bilot, L.Acta Phys. Polon. 1964,26, 41.Google Scholar
  62. 62.
    Kawski, A.Acta Phys. Polon. 196,29, 507.Google Scholar
  63. 63.
    Chamma, A.; Viallet, P.C. R. Acad. Sci. Paris, Sér. C 1970,270, 1901.Google Scholar
  64. 64.
    Suppan, P.J. Photochem. Photobiol. A: Chem. 1990,50, 293.Google Scholar
  65. 65.
    Katritzky, A. R.; Karelson, M.J. Am. Chem. Soc. 1991,113, 1561.Google Scholar
  66. 66.
    Scanlan, M. J.; Hillier, I. H.J. Am. Chem. Soc. 1984,106, 3737.Google Scholar
  67. 67.
    Pariser, R.; Parr, R. G.J. Chem. Phys. 1953,21, 466.Google Scholar
  68. 68.
    Pople, J. A.Trans. Faraday Soc. 1953,49, 1375.Google Scholar
  69. 69.
    Nishimoto, K.; Mataga, N.Z. Physik. Chem. (Frankfurt am Main) 1957,12, 335;1957,13, 140.Google Scholar
  70. 70.
    Párkányi, C.; Vernin, G.; Zamkotsian, R. M.; Metzger, J.Heterocydes 1984,22, 1077.Google Scholar
  71. 71.
    Fabian, J.; Mehlhorn, A.; Zahradník, R. J. Phys. Chem.1968,72, 3975.Google Scholar
  72. 72.
    Zahradník, R.; Tesařová, I.; Pancíř, J.Collect. Czech. Chem. Commun. 1971,36, 2867.Google Scholar
  73. 73.
    Smyth, C. P.Dielectric Behaviour and Structure; McGraw-Hill: New York, 1955.Google Scholar
  74. 74.
    Ferguson, L. N.Organic Molecular Structure; Willard Grant Press: Boston, 1977.Google Scholar
  75. 75.
    Minkin, V. I.; Osipov, O. A.; Zhdanov, Yu. A.Dipole Moments in Organic Chemistry; Plenum Press: New York; 1970;Dipol'nye Momenty; Khimiya: Leningrad, 1968.Google Scholar
  76. 76.
    Exner, O.Dipole Moments in Organic Chemistry; G. Thieme: Stuttgart, 1975.Google Scholar
  77. 77.
    Pople, J. A.; Beveridge, A. L.Approximate Molecular Orbital Theory; McGraw-Hill: New York, 1970.Google Scholar
  78. 78.
    Kulakowska, I.; Geller, M.; Lesyng, B.; Bolewska, K.; Wierzchowski, K. L.Biochim. Biophys. Acta,1975,407, 420.Google Scholar
  79. 79.
    Hückel, W.; Salinger, C. M.Chem. Ber. 1944,77, 810.Google Scholar
  80. 80.
    Lumbroso, H.; Pigenet, C.; Nanielski-Hinkens, R.; Promel, R.Bull. Soc. Chim. France 1967, 1833.Google Scholar
  81. 81.
    Schneider, W. C.J. Am. Chem. Soc. 1948,70, 627.Google Scholar
  82. 82.
    Blackman, G. L.; Brown, R. D.; Burden, F. R.J. Mol. Spectrosc. 1970,35, 444.Google Scholar
  83. 83.
    Berthod, H.; Pullman, B.Biochem. Biophys. Res. Commun. 1972,46, 125.Google Scholar
  84. 84.
    Mauret, P.; Fayet, J. P.C. R. Acad. Sci. Paris, Sér. C 1967,264, 2081.Google Scholar
  85. 85.
    Kulakowska, I.; Geller, M.; Lesyng, B.; Wierzchowski, K. L.Biochim. Biophys. Acta 1974,361, 119.Google Scholar
  86. 86.
    Weiler-Feilchenfeld, H.; Bergmann, E. D.Israel J. Chem. 1968,6, 823.Google Scholar
  87. 87.
    Bogatina, N. I.; Chmutov, V. M.Zh. Fiz. Khim. 1981,55, 616;J. Phys. Chem. USSR 1981,55, 1476.Google Scholar
  88. 88.
    Schneider, W. C.; Halverstadt, I. F.J. Am. Chem. Soc. 1948,70, 2626.Google Scholar
  89. 89.
    Soundarajan, S.Trans. Faraday Soc. 1958,54, 1147.Google Scholar
  90. 90.
    Román Ceba, M.; Cruces Blanco, C.; García Sánchez, F.J. Photochem. Photobiol. 1985,30, 353.Google Scholar
  91. 91.
    Launay, B.; Wojtkowiak, B.Bull. Soc. Chim. France 1969, 3036.Google Scholar
  92. 92.
    Baba, H.; Goodman, L.; Valenti, P. C.J. Am. Chem. Soc. 1966,88, 5410.Google Scholar
  93. 93.
    Seibold, K.; Labhart, H.Biopolymers 1971,10, 2063.Google Scholar
  94. 94.
    Brady, J. E.; Carr, P. W.J. Phys. Chem. 1985,89, 5759.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Cyril Párkányi
    • 1
  • Christian Boniface
    • 1
  • Jean-Jacques Aaron
    • 2
  • Mame Diabou Gaye
    • 2
  • Ratna Ghosh
    • 3
  • László von Szentpály
    • 3
  • Krishnan S. RaghuVeer
    • 4
  1. 1.Department of ChemistryFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Laboratoire de Chimie Organique Physique, Institut de Topologie et de Dynamique des Systèmes [Associé au CNRS]Université Paris VIIParisFrance
  3. 3.Department of ChemistryUniversity of the West IndiesKingston 7Jamaica
  4. 4.Center for Photochemical SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations