Advertisement

International Journal of Theoretical Physics

, Volume 27, Issue 1, pp 57–71 | Cite as

Spinor fields with zero mass in unbounded isotropic media

  • P. Hillion
Article

Abstract

The Dirac equation for massless fields in unbounded media has solutions similar to the focus wave mode solutions of Maxwell's equations leading to infinite dynamical invariants. We define the splash wave mode solutions as a weighted superposition of the focus wave modes, and discuss the conditions to be fulfilled by the weight functions to make the dynamical invariants bounded. We leave open the physical interpretation of these solutions.

Keywords

Field Theory Elementary Particle Quantum Field Theory Weight Function Dirac Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brittingham, J. N. (1985).Journal of Applied Physics,57, 678.Google Scholar
  2. Davis, L. W. (1979).Physical Review A,19, 1177.Google Scholar
  3. De Broglie, L. (1940).Une nouvelle theorie de la lumière, Hermann, Paris.Google Scholar
  4. Dirac, P. A. M. (1951).Nature,168, 906.Google Scholar
  5. Gabor, G. D. (1946).Journal of the Institute of Electrical Engineering,93, 429.Google Scholar
  6. Helstrom, C. W. (1966).IEEE Transaction on Information Theory,12, 81.Google Scholar
  7. Hillion, P. (1986).Journal of Applied Physics,60, 981.Google Scholar
  8. Hillion, P. (1987).Journal of Mathematical Physics,28, 1743.Google Scholar
  9. Hillion, P., and Quinnez, S. (1986a).International Journal of Theoretical Physics 25, 727.Google Scholar
  10. Hillion, P., and Quinnez, S. (1986b).Journal of Optical Communications,7, 49.Google Scholar
  11. Korevaar, J. (1968).Mathematical Methods, Vol. 1, Academic Press.Google Scholar
  12. Lax, M., Louisell, W. H., and McKnight, W. B. (1975).Physical Review A,11, 1365.Google Scholar
  13. Van der Pol, B., and Bremmer, H. (1959).Operational Calculus, Cambridge University Press.Google Scholar
  14. Wu, T. T., and Lehmann, H. (1985).Journal of Applied Physics,58, 2064.Google Scholar
  15. Ziolkowski, R. W. (1985).Journal of Mathematical Physics,26, 861.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • P. Hillion
    • 1
  1. 1.Institut Henri PoincaréParisFrance

Personalised recommendations