Towards a combinatorial description of space and strong interactions

  • P. Żenczykowski


A reinterpretation is given of a successful phenomenological approach to hadron self-energy effects known as the unitarized quark model. General arguments are given that the proper description of strong interactions may require abandoning the assignment of a primary role to continuous concepts such as position and momentum in favor of discrete ones such as spin orW-spin. The reinterpretation exploits an analogy between theW-spin diagrams occurring in the calculations of hadronic loop effects and the spin network idea of Penrose. A connection between theS-matrix approach to hadron masses and the purely algebraic approach characteristic of the quark model is indicated. Several hadron mass relations generated by a resultingSU(6)W-group-theoretic expression are presented and discussed. Results of an attempt to generalize the scheme to the description of hadron vertices are reported.


Quantum Field Theory Strong Interaction Primary Role Quark Model Mass Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (1985).Physics Today,1985 (August), 17.Google Scholar
  2. Arndt, R. A.,et al. (1979).Physical Review D,20, 651.Google Scholar
  3. Aspect, A., Dalibard, J., and Roger, G. (1982).Physical Review Letters,49, 1804.Google Scholar
  4. Barnes, K. J., Carruthers, P., and von Hippel, F. (1965).Physical Review Letters,14, 82.Google Scholar
  5. Bell, J. S. (1964).Physics (N.Y.) 1, 195.Google Scholar
  6. Budini, P. (1979).Hadronic Journal 2, 840.Google Scholar
  7. Chew, G. F. (1971). The bootstrap idea and the foundations of quantum theory, inQuantum Theory and Beyond, T. Bastin, ed., Cambridge University Press.Google Scholar
  8. Clauser, J. F., and Shimony, A. (1978).Reports on Progress in Physics 41, 1882.Google Scholar
  9. De Rújula, A., Georgi, H., and Glashow, S. L. (1975).Physical Review D,12, 147.Google Scholar
  10. Dicus, D. A., and Teplitz, V. L. (1985). Is there a ΔΔπ problem, inA Passion for Physics, C. de Tar, J. Finkelstein, and C. I. Tan, eds., World Scientific, Singapore.Google Scholar
  11. Gell-Mann, M. (1962).Physical Review,125, 1067.Google Scholar
  12. Gell-Mann, M. (1964).Physics Letters,8, 214.Google Scholar
  13. Grandpeix, J.-Y., and Lurçat, F. (1985). Preprint LPTHE Orsay 85/6.Google Scholar
  14. Gürsey, F., and Radicati, L. A. (1964).Physical Review Letters,13, 173.Google Scholar
  15. Lipkin, H. J. (1983).Nuclear Physics B,214, 136.Google Scholar
  16. Lipkin, H. J., and Meshkov, S. (1965).Physical Review Letters,14, 670.Google Scholar
  17. Okubo, S. (1962).Progress in Theoretical Physics,27, 949.Google Scholar
  18. Pais, A. (1964).Physical Review Letters,13, 175.Google Scholar
  19. Patton, C. M., and Wheeler, J. A. (1975). Is physics legislated by cosmogony, inQuantum Gravity an Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds., pp. 538–605, Clarendon Press, Oxford.Google Scholar
  20. Penrose, R. (1971). Angular momentum: An approach to combinatorial space-time, inQuantum Theory and Beyond, T. Bastin, ed., Cambridge University Press.Google Scholar
  21. Penrose, R. (1977).Reports on Mathematical Physics,12, 65.Google Scholar
  22. Penrose, R., and MacCallum, M. A. H. (1973).Physics Reports,6C, 241.Google Scholar
  23. Penrose, R., Sperling, G. A. J., and Tsou, S. T. (1978).Journal of Physics A,11, L231.Google Scholar
  24. Perjés, Z. (1977).Reports on Mathematical Physics,12, 193.Google Scholar
  25. Perjés, Z. (1979).Physical Review D,20, 1857.Google Scholar
  26. Schwinger, J. (1967).Physical Review Letters,18, 923.Google Scholar
  27. Stapp, H. P. (1971).Physical Review D,3, 1303.Google Scholar
  28. Törnqvist, N. A. (1979).Annals of Physics 123, 1.Google Scholar
  29. Törnqvist, N. A. (1982a).Physical Review Letters,49, 624.Google Scholar
  30. Törnqvist, N. A. (1982b).Nuclear Physics B,203, 268.Google Scholar
  31. Törnqvist, N. A. (1985).Acta Physica Polonica B,16, 503.Google Scholar
  32. Törnqvist, N. A., and Żenczykowski, P. (1984).Physical Review D,29, 2139.Google Scholar
  33. Törnqvist, N. A., and Żenczykowski, P. (1986).Zeitschrift für Physik C,30, 83.Google Scholar
  34. Törnqvist, N. A., and Żenczykowski, P. (1987).Zeitschrift für Physik C,31, 439.Google Scholar
  35. Wheeler, J. A. (1973). From relativity to mutability, inThe Physicist's Conception of Nature, J. Mehra, ed., p. 22. D. Reidel, Dordrecht.Google Scholar
  36. Żenczykowski, P. (1984).Zeitschrift für Physik C,26, 441.Google Scholar
  37. Żenczykowski, P. (1985).Zeitschrift für Physik C,28, 317.Google Scholar
  38. Żenczykowski, P. (1986).Annals of Physics,169, 453.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • P. Żenczykowski
    • 1
  1. 1.Department of Theoretical PhysicsInstitute of Nuclear PhysicsKraków 23Poland

Personalised recommendations