Advertisement

Structural Chemistry

, Volume 3, Issue 1, pp 63–65 | Cite as

Hydrogen-bonding contributions to the lattice energy of salts for second harmonic generation

  • Christer B. Aakeröy
  • Kenneth R. Seddon
  • Maurice Leslie
Communication

Abstract

The lattice energies of a series of organic dihydrogenphosphate salts capable of second harmonic generation (SHG) have been calculated. These calculations, coupled with empirical data, indicate that a minimum of 20–25% of the lattice energy arises from hydrogen-bond interactions. Hydrogen bonding is shown to be a strong enough force to have a profound effect on the overall packing and crystal geometry of such ionic materials, and is thus an important factor to consider for crystal engineering.

Keywords

Hydrogen Physical Chemistry Hydrogen Bonding Empirical Data Second Harmonic Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chemla, D. S.; Zyss, J., Eds.Nonlinear Optical Properties of Organic Molecules and Crystals; Academic Press: New York, 1987; Vols. 1 and 2.Google Scholar
  2. 2.
    Williams, D. J., Ed.Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symp. Ser. 233; American Chemical Society: Washington, D.C., 1983.Google Scholar
  3. 3.
    Khanarian, G. Ed.Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, SPIE 682; SPIE: San Diego, 1986.Google Scholar
  4. 4.
    Aakeröy, C. B.; Hitchcock, P. B.; Moyle, B. D.; Seddon, K. R.J. Chem. Soc., Chem. Commun.,1989, 1856.Google Scholar
  5. 5.
    Aakeröy, C. B.; Hitchcock, P. B.; Seddon, K. R. unpublished results.Google Scholar
  6. 6.
    Catlow, C. R. A.; Mackrodt, W. C., Eds.Computer-Simulation of Solids, Lecture Notes in Physics 166; Springer: Berlin, 1982.Google Scholar
  7. 7.
    Catlow, C. R. A.; Freeman, C. M.; Islam, M. S.; Jackson, R. A.; Leslie, M.; Tomlinson, S. M.Phil. Mag. A,1988,58, 123.Google Scholar
  8. 8.
    Seitz, F.Modern Theory of Solids, 1st ed.; McGraw-Hill: New York, 1940.Google Scholar
  9. 9.
    Lisker, E. J.; Cowlan, N.; Gilliot, L.Acta Crystallogr., Sect. B.,1979,35, 1033.Google Scholar
  10. 10.
    Lerbscher, J. A.; Trotter, J.Acta Crystallogr., Sect. B.,1976,32, 2671.Google Scholar
  11. 11.
    Jenkins, H. D. B.; Pratt, K. F.Adv. Inorg. Chem. Radiochem.,1979,22, 1.Google Scholar
  12. 12.
    Pullman, A.; Armbruster, A. M.Int. J. Quantum Chem. Symp.,1974,8S, 169.Google Scholar
  13. 13.
    Handbook of Chemistry and Physics, 66th ed.; CRC Press: Boca Raton, FL, 1985–86.Google Scholar
  14. 14.
    Meot-Ner (Mautner), M. InMolecular Structure and Energetics, Vol. 4 Liebman, J. F.; Greenberg, A., Eds.; VCH: New York, 1987; pp. 72–103.Google Scholar
  15. 15.
    Lehn, J.-M.Angew. Chem. Int. Ed. Engl.,1988,27, 89.Google Scholar
  16. 16.
    Etter, M. C.; Adsmond, D. A.J. Chem. Soc., Chem. Commun.,1990, 589.Google Scholar
  17. 17.
    Leslie, M.SERC Daresbury Lab. Kept. DL-SCI-TM31T, 1982.Google Scholar
  18. 18.
    Ewald, P. P.Ann. Physik,1921,64, 253.Google Scholar
  19. 19.
    Binkley, J. S.; Frisch, M. J.; Raghavachari, K.; DeFrees, D.-J.; Schlegel, H. B.; Whiteside, R. A.; Fluder, G.; Seeger, R.; Pople, J. A.GAUSSIAN 82, release A; Carnegie-Mellon University, 1983.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Christer B. Aakeröy
    • 1
  • Kenneth R. Seddon
    • 1
  • Maurice Leslie
    • 2
  1. 1.School of Molecular SciencesUniversity of SussexFalmerUK
  2. 2.S.E.R.C. Daresbury LaboratoryWarringtonUK

Personalised recommendations