Advertisement

International Journal of Theoretical Physics

, Volume 32, Issue 7, pp 1087–1103 | Cite as

Introduction to SH Lie algebras for physicists

  • Tom Lada
  • Jim Stasheff
Article

Keywords

Field Theory Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, D., and Lambe, L. A. (1991).Proceedings of the American Mathematical Society,112, 881–892.Google Scholar
  2. Berends, F. A., Burgers, G. J. H., and van Dam, H. (1985).Nuclear Physics B,260, 295–322.Google Scholar
  3. Burgers, G. J. H. (1985). On the construction of field theories for higher spin massless particles, Doctoral dissertation, Rijksuniversiteit te Leiden.Google Scholar
  4. Chevalley, C., Eilenberg, S. (1948).Transactions of the American Mathematical Society,63, 85–124.Google Scholar
  5. Gerstenhaber, M. (1963).Annals of Mathematics,78, 267–288.Google Scholar
  6. Gugenheim, V. K. A. M. (1972).Illinois Journal of Mathematics,3, 398–414.Google Scholar
  7. Gugenheim, V. K. A. M. (1982).Journal of Pure and Applied Algebra,25, 197–205.Google Scholar
  8. Gugenheim, V. K. A. M., and Lambe, L. (1989).Illinois Journal of Mathematics,33.Google Scholar
  9. Gugenheim, V. K. A. M., and Stasheff, J. (1986).Bulletin Société Mathématique de Belgique,38, 237–246.Google Scholar
  10. Gugenheim, V. K. A. M., Lambe, L., and Stasheff, J. (1990).Illinois Journal of Mathematics,34, 485–502.Google Scholar
  11. Gugenheim, V. K. A. M., Lambe, L., and Stasheff, J. (1991).Illinois Journal of Mathematics,35, 357–373.Google Scholar
  12. Hata, H., Itoh, K., Kugo, T., Kunitomo, H., and Ogawa, K. (1986).Physical Review D,34, 2360–2429.Google Scholar
  13. Hata, H., Itoh, H., Kugo, T., Kunitomo, H., and Ogawa, K. (1987).Physical Review D,35, 1318–1355.Google Scholar
  14. Jones, E. (1990). A study of Lie and associative algebras from a homotopy point of view, Master's Project, North Carolina State University.Google Scholar
  15. Kadeishvili, T. (1982).Soobsh cheniya Akademiya Nauk Gruzinskoi SSR,108, 249–252.Google Scholar
  16. Kaku, M. (1988a).Physics Letters B,200, 22–30.Google Scholar
  17. Kaku, M. (1988b). Deriving the four-string interaction from geometric string field theory, preprint, CCNY-HEP-88/5.Google Scholar
  18. Kaku, M. (1988c). Geometric derivation of string field theory from first principles: Closed strings and modular invariance, preprint, CCNY-HEP-88/6.Google Scholar
  19. Kaku, M. (1988d).Introduction to Superstrings, Springer-Verlag, Berlin.Google Scholar
  20. Kontsevich, M. (1992). Graphs, homotopical algebra and low-dimensional topology, preprint.Google Scholar
  21. Kaku, M., and Lykken, J. (1988). Modular invariant closed string field theory, preprint, CCNY-HEP-88/7.Google Scholar
  22. Kugo, T. (1987). String field theory, Lectures delivered at 25th Course of the International School of Subnuclear Physics on “The Super World II”, Erice, August 6–14, 1987.Google Scholar
  23. Kugo, T., and Suehiro, K. (1990).Nuclear Physics B, 434–466.Google Scholar
  24. Kugo, T., Kunitomo, H., and Suehiro, K. (1989).Physics Letters,226B, 48–54.Google Scholar
  25. Lambe, L. (1992). Homological perturbation theory—Hochschild homology and formal groups, inProceedings Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, June 1990, AMS, Providence, Rhode Island.Google Scholar
  26. Lambe, L., and Stasheff, J. D. (1987).Manuscripta Mathematica,58, 363–376.Google Scholar
  27. Retakh, V. S. (1977).Functional Analysis and Its Applications,11, 88–89.Google Scholar
  28. Retakh, V. S. (1993). Lie-Massey brackets andn-homotopically multiplicative maps of DG-Lie algebras,Journal of Pure and Applied Algebra, to appear.Google Scholar
  29. Saadi, M. and Zwiebach, B. (1989).Annals of Physics,192, 213–227.Google Scholar
  30. Samelson, H. (1953).American Journal of Mathematics,75, 744–752.Google Scholar
  31. Schlessinger, M., and Stasheff, J. D. (1985).Journal of Pure and Applied Algebra,38, 313–322.Google Scholar
  32. Schlessinger, M., Stasheff, J. D. (n.d.) Deformation theory and rational homotopy type, Publications Mathematiques IHES, to appear.Google Scholar
  33. Stasheff, J. D. (1963a).Transactions of the American Mathematical Society,108, 275–292.Google Scholar
  34. Stasheff, J. D. (1963b).Transactions of the American Mathematical Society,108, 293–312.Google Scholar
  35. Stasheff, J. D. (1970).H-Spaces From a Homotopy Point of View, Springer-Verlag, Berlin.Google Scholar
  36. Stasheff, J. D. (1988).Bulletin of the American Mathematical Society,1988, 287–290.Google Scholar
  37. Stasheff, J. (1989). An almost groupoid structure for the space of (open) strings and implications for string field theory,Advances in Homotopy Theory (Cortona, June 1988), LMS Lecture Note Series 139, pp. 165–172.Google Scholar
  38. Stasheff, J. (1992). Drinfel'd's quasi-Hopf algebras and beyond, inProceedings Conference on Deformation Theory and Quantization with Applications to Physics, Amherst, June 1990, AMS, Providence, Rhode Island.Google Scholar
  39. Whitehead, J. H. C., (1941).Annals of Mathematics,42, 409–428.Google Scholar
  40. Wiesbrock, H.-W., (1991).Communications in Mathematical Physics,136, 369–397.Google Scholar
  41. Wiesbrock, H.-W., (1992a).Journal of Mathematical Physics,33, 1837–1840.Google Scholar
  42. Wiesbrock, H.-W. (1992b).Communications in Mathematical Physics,145, 17–42.Google Scholar
  43. Witten, E. (1992). Chern-Simons gauge theory as a string theory, preprint IASSNS-HEP-92/45.Google Scholar
  44. Witten, E., and Zwiebach, B. (1992).Nuclear Physics B,377, 55–112.Google Scholar
  45. Zwiebach, B. (1992). Closed string field theory: Quantum action and the BV master equation, preprint IASSNS-HEP-92/41.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Tom Lada
    • 1
  • Jim Stasheff
    • 2
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleigh
  2. 2.Department of MathematicsUniversity of North CarolinaChapel Hill

Personalised recommendations