International Journal of Theoretical Physics

, Volume 33, Issue 1, pp 199–212 | Cite as

The joint measurement problem

  • Jos Uffink
Article

Abstract

According to orthodox quantum theory, the joint measurement of noncommuting observables is impossible. It has been claimed recently that such joint measurements are admitted in a generalized formalism for quantum theory developed by Ludwig and Davies, by means of so-called ‘unsharp observables.’ It is argued in this paper that this claim has not been substantiated.

Keywords

Field Theory Elementary Particle Quantum Field Theory Quantum Theory Measurement Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S. T. (1985).Rivista del Nuovo Cimento,8(11).Google Scholar
  2. Ali, S. T., and Doebner, H. D. (1976).Journal of Mathematical Physics,17, 1105.Google Scholar
  3. Ali, S. T., and Emch, G. G. (1974).Journal of Mathematical Physics,15, 176.Google Scholar
  4. Braunstein, S. L., Caves, C. M., and Milburn, G. J. (1991).Physical Review A,43, 1153.Google Scholar
  5. Busch, P. (1985a).International Journal of Theoretical Physics,24, 63.Google Scholar
  6. Busch, P. (1985b). InRecent Developments in Quantum Logic, P. Mittelstaedt and E. W. Stachow, eds., Bibliographisches Institut, Mannheim, p. 81.Google Scholar
  7. Busch, P. (1987a).Foundations of Physics,17, 905.Google Scholar
  8. Busch, P. (1987b). InSymposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds., World Scientific, Singapore, p. 105.Google Scholar
  9. Busch, P., and Lahti, P. J. (1984).Physical Review D,29, 1634.Google Scholar
  10. Busch, P., and Lahti, P. J. (1985).Philosophy of Science,52, 64.Google Scholar
  11. Busch, P., and Schroeck, F. E., Jr. (1989).Foundations of Physics,19, 807.Google Scholar
  12. Busch, P., Grabowski, M., and Lahti, P. J. (1989).Foundations of Physics Letters,2, 331.Google Scholar
  13. Davies, E. B. (1976).Quantum Theory of Open Systems, Academic Press, New York.Google Scholar
  14. Grabowski, M. (1989).Foundations of Physics,19, 923.Google Scholar
  15. Holevo, A. S. (1982).Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam.Google Scholar
  16. Klauder, J. R., and Skagerstam, B.-S. (1985).Coherent States, World Scientific, Singapore.Google Scholar
  17. Lévy-Leblond, J.-M. (1976).Annals of Physics,101, 319.Google Scholar
  18. Ludwig, G. (1976).Einführung in die Grundlagen der Theoretischen Physik, Volume 3, Vieweg, Braunschweig.Google Scholar
  19. Mackey, G. W. (1963).The Mathematical Foundations of Quantum Theory, Benjamin, New York.Google Scholar
  20. Martens, H. (1991). The uncertainty principle, Ph.D. Thesis, Technical University of Eindhoven.Google Scholar
  21. Martens, H., and de Muynck, W. M. (1990a).Foundations of Physics,20, 255.Google Scholar
  22. Martens, H., and de Muynck, W. M. (1990b).Foundations of Physics,20, 357.Google Scholar
  23. Mittelstaedt, P., Prieur, A., and Schieder, R. (1987).Foundations of Physics,71, 891.Google Scholar
  24. Prugovecki, E. (1976).Journal of Mathematical Physics,17, 517.Google Scholar
  25. Prugovecki, E. (1984).Stochastic Quantum Mechanics and Quantum Spacetime, Reidel, Dordrecht.Google Scholar
  26. Schroeck, F. E., Jr. (1982).Foundations of Physics,12, 479.Google Scholar
  27. Schroeck, F. E., Jr. (1985).Foundations of Physics,15, 677.Google Scholar
  28. Schroeck, F. E., Jr. (1989).International Journal of Theoretical Physics,28, 247.Google Scholar
  29. She, C. Y., and Heffner, H. (1966).Physical Review,152, 1103.Google Scholar
  30. Varadarajan, V. S. (1962).Communications in Pure and Applied Mathematics,15, 189; correction,18 (1965).Google Scholar
  31. Von Neumann, J. (1932).Mathematische Grundlagen der Quantenmechanik, Springer, Berlin [English translation:Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey].Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jos Uffink
    • 1
  1. 1.Foundations of ScienceUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations