Advertisement

Momentum transfer in crystal lattices with vibrating atoms

  • Edwin R. Fitzgerald
Article

Abstract

A momentum transfer equation previously used to describe non-elastic deformation in crystalline solids represented by point masses at fixed lattice positions is extended to take into account the existence of intrinsic (e.g. thermal) small amplitude vibrations of the masses about their mean positions in a lattice. Use of the time-dependent Schroedinger equation to describe momentum transfer and deformation is also discussed in terms of this vibrating point-mass lattice model. The result is that a modified and identical differential equation for momentum transfer is obtained from each approach; some solutions to this equation are presented. The previous particle momentum wave frequency dependence on wave vector and resulting applications to non-elastic deformation are unchanged, but these particle momentum waves can now be considered as modulating the usual high-frequency waves associated with the elastic modes of a crystalline solid.

Keywords

Crystal Lattice Wave Vector Frequency Dependence Momentum Transfer Small Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Einstein, A. (1906).Ann. Physik.,22, 180, 800.Google Scholar
  2. Einstein, A. (1911).Ann. Physik.,34, 170.Google Scholar
  3. Fitzgerald, E. R. (1964).Physics Letters,10, 42.Google Scholar
  4. Fitzgerald, E. R. (1966a).Journal of the Acoustical Society of America,39, 856.Google Scholar
  5. Fitzgerald, E. R. (1966b).Particle Waves and Deformation in Crystalline Solids. Interscience Div., John Wiley and Sons, Inc., New York.Google Scholar
  6. Fitzgerald, E. R. and Tasi, J. (1967).International journal of Solids, Structures,3, 927.Google Scholar
  7. Fitzgerald, E. R. and Wright, T. W. (1967).Phys. Stat. Sol.,24, 37.Google Scholar
  8. Hirsch, P. B. (1956).Progress in Metal Physics,6, 236.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1969

Authors and Affiliations

  • Edwin R. Fitzgerald
    • 1
  1. 1.The Johns Hopkins UniversityBaltimore

Personalised recommendations