International Journal of Theoretical Physics

, Volume 4, Issue 1, pp 55–82 | Cite as

Power series of the free field as operator-valued functional on spaces of typeS

  • A. Rieckers


Infinite series of Wick powers of the free, massive Bose field are analysed in terms of test function spaces of typeS for arbitrary space dimension. By direct estimates of the smeared phase space integrals sufficiency conditions for the existence of the vacuum expectation values are derived. These conditions are shown to be precise. The field-operators are defined on a dense invariant domain in Fock space, where they satisfy the Wightman axioms with the possible exception of locality. Localisable and nonlocalisable fields are dealt within the same frame. The behaviour of spectral functions and the strength of singularities are discussed.


Power Series Spectral Function Space Dimension Vacuum Expectation Direct Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Horchers, H. J. (1960).Nuovo cimento,15, 784.Google Scholar
  2. Constantinescu, F. (1969). Summaries of the Informal Meeting on Renormalization Theory. Trieste.Google Scholar
  3. Efimov, G. V. (1969a).Nonlocal Quantum Theory of the Scalar Field, Vols. I, II and III. Trieste.Google Scholar
  4. Efimov, G. V. (1969b). Preprint Th 1087-CERN.Google Scholar
  5. Epstein, H. (1963).Nuovo cimento,27, 886.Google Scholar
  6. Gelfand, I. M. and Schilow, G. E. (1962).Verallgemeinerte Funktionen, Vol. II, VEB Deutsch. Verl. d. Wissensch., Berlin.Google Scholar
  7. Gelfand, I. M. and Wilenkin, N. J. (1964).Verallgemeinerte Funktionen, Vol. IV, VEB Deutsch, Verl. d. Wissensch., Berlin.Google Scholar
  8. Gürsey, F. (1968). Intern. Universitätswochen für Kernphysik, Schladming.Google Scholar
  9. Güttinger, W. (1958).Nuovo cimento,10, 1.Google Scholar
  10. Jaffe, A. (1965a).Annals of Physics,32, 127.Google Scholar
  11. Jaffe, A. (1965b).Journal of Mathematics and Physics,6, 1172.Google Scholar
  12. Jaffe, A. (1966).Physical Review Letters,17, 661.Google Scholar
  13. Jaffe, A. (1967). Preprint SLAC-PUB-250.Google Scholar
  14. Jaffe, A. (1968). ‘High Energy Behaviour of Strictly Localizable Fields, II’. Unpublished. Harvard.Google Scholar
  15. Jost, R. (1965).The General Theory of Quantized Fields. American Mathematical Society, Rhode Island.Google Scholar
  16. Khoruzhij, S. S. (1966). Preprints JIN-R2-3085, R2-3086, Dubna.Google Scholar
  17. Lee, B. W. and Zumino, B. (1969). Preprint TH 1053-CERN.Google Scholar
  18. Magnus, W. and Oberhettinger, F. (1948).Formeln und Sätze für die speziellen Funktionen der mathematischen Physik. Springer, Berlin.Google Scholar
  19. Martineau, A. (1963).J. d'Anal. Math. 11, 1.Google Scholar
  20. Rieckers, A. and Güttinger, W. (1968).Communications in Mathematical Physics,7, 190.Google Scholar
  21. Rieckers, A. (1969). Thesis, Munich.Google Scholar
  22. Salam, A. (1969). Summaries of the Informal Meeting on Renormalisation Theory. Trieste.Google Scholar
  23. Salam, A. and Strathedee, J. (1969). Preprint, Trieste.Google Scholar
  24. Schaefer, H. H. (1966).Topological Vector Spaces. Macmillan, New York.Google Scholar
  25. Schroer, B. (1964).Journal of Mathematics and Physics,5, 1361.Google Scholar
  26. Streater, R. F. and Wightman, A. S. (1964).PCT, Spin and Statistics and All That. Benjamin, New York and Amsterdam.Google Scholar
  27. Wightman, A. S. and Garding, L. (1964).Arkiv för fysik,28, 129.Google Scholar
  28. Weinberg, S. (1960).Physical Review,118, 838.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1971

Authors and Affiliations

  • A. Rieckers
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of TübingenGermany

Personalised recommendations