Advertisement

International Journal of Theoretical Physics

, Volume 24, Issue 11, pp 1051–1080 | Cite as

Fundamental principles of quantum theory. II. From a convexity scheme to the DHB theory

  • Pekka J. Lahti
  • Slawomir Bugajski
Article

Abstract

Some classical and quantum theories are characterized within the convexity approach to probabilistic physical theories. In particular, the structure of the so-called DHB quantum theory will be analyzed. It turns out that the natural generalization of the standard Hubert space quantum mechanics, the operational one, is such a theory. The operational Hilbert space quantum theory will be reconstructed from the (weak) projection postulate and the complementarity principle. This is then used to argue that the DHB quantum theory is identical with the operational Hilbert space quantum theory.

Keywords

Hilbert Space Field Theory Elementary Particle Quantum Field Theory Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfsen, E. M. (1971).Compact Convex Sets and Boundary Integrals. Springer-Verlag, Berlin.Google Scholar
  2. Alfsen, E., and Schultz, F. (1976). Non-commutative spectral theory for affine function spaces on convex sets.Memoirs of the American Mathematical Society 6, No. 172.Google Scholar
  3. Asimow, L., and Ellis, A. J. (1980).Convexity Theory and Its Applications in Functional Analysis Academic Press, London.Google Scholar
  4. Badurek, Gr., Rauch, H., Summhammer, J., Kischkol, U., and Zeilinger, A. (1983). Direct verification of the quantum spin-state superposition law.Journal of Physics A: Math. Gen,16, 1133–1139.Google Scholar
  5. Beltrametti, E., and Cassinelli, G. (1981).The Logic of Quantum Mechanics. Addison-Wesley Publishing Company, Reading, Massachusetts.Google Scholar
  6. Bugajska, K., and Bugajski, S. (1973). The projection postulate in quantum logic.Bulletin of the Academy of Polish Science Series in Sciences Mathematics, Astronomy, and Physics,21, 873–877.Google Scholar
  7. Bugajski, S. (1981). Two questions on quantum mixture, in14th Symposium on Mathematical Physics, Torun, December 8–11.Google Scholar
  8. Bugajski, S., and Lahti, P. (1980). Fundamental principles of quantum theory,International Journal of Theoretical Physics,19, 499–514.Google Scholar
  9. Busch, P. (1982).Unbestimmtheitsrelation und simultane Messung in der Quanten-Theoric, doctoral dissertation, Köln.Google Scholar
  10. Busch, P., and Lahti, P. (1984). On various joint measurements of position and momentum observables in quantum theory,Physical Review D,29, 1634–1646.Google Scholar
  11. Busch, P., and Lahti, P. (1985). A note on quantum theory, complementarity, and uncertainty,Philosophy of Science,52, 64–77.Google Scholar
  12. Davies, E. B. (1972). Example related to the foundations of quantum theory,Journal of Mathematical Physics,13, 39–41.Google Scholar
  13. Davies, E. B. (1976).Quantum Theory of Open Systems. Academic Press, London.Google Scholar
  14. Davies, E. B., and Lewis, J. T. (1970). An operational approach to quantum probability,Communications on Mathematical Physics,17, 239–260.Google Scholar
  15. Dirac, P. A. N. (1930).The Principle of Quantum Mechanics. Oxford University Press, Amen House, London.Google Scholar
  16. Emch, G. (1972).Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley-Interscience, New York.Google Scholar
  17. Gerjuoy, E. (1973). Is the principle of superposition really necessary?, inContemporary Research in the Foundations and Philosophy of Quantum Theory, C. A. Hooker, ed., D. Reidel Publ. Co., Dordrecht, Holland, pp. 114–142.Google Scholar
  18. Gudder, S. (1970). A superposition principle in physics,Journal of Mathematical Physics,11, 1037–1040.Google Scholar
  19. Gudder, S. (1978).Stochastic Methods in Quantum Mechanics. North-Holland, New York.Google Scholar
  20. Gudder, S., and Marchand, J.-P. (1972). Noncommutative probability theory on von Neumann algebras,Journal of Mathematical Physics,13, 799–806.Google Scholar
  21. Heisenberg, W. (1949).The Physical Principles of the Quantum Theory. Dover Publications, New York.Google Scholar
  22. Ingarden, R. S. (1974).Information Theory and Thermodynamics, Part I, Chapter II, Quantum Theory. Reprint No 275, Torun, Poland.Google Scholar
  23. Jammer, M. (1974).The Philosophy of Quantum Mechanics. John Wiley & Sons, New York.Google Scholar
  24. Lahti, P. (1980a). Uncertainty and complementarity in axiomatic quantum mechanics,International Journal of Theoretical Physics,19, 789–842.Google Scholar
  25. Lahti, P. (1980b). Characterization of quantum logics,International Journal of Theoretical Physics,19, 905–923.Google Scholar
  26. Lahti, P. (1981). On the inter-relations of the three quantal principles,Current Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds. Plenum Press, New York, pp. 447–454.Google Scholar
  27. Lahti, P. (1985). A coherent superposition principle and the Hilbertian quantum theory.Reports on Mathematical Physics,22, 49–62.Google Scholar
  28. Lahti, P. (1983). Hilbertian quantum theory as the theory of complementarity,International Journal of Theoretical Physics,22, 911–929.Google Scholar
  29. Lahti, P. (1984). On the role of projection postulate in quantum theory,Reports on Mathematical Physics,21, 107–120.Google Scholar
  30. Ludwig, G. (1982).Foundations of Quantum Mechanics, Vol I. Springer-Verlag, Berlin.Google Scholar
  31. Mielnik, B. (1969). Theory of filters,Communications on Mathematical Physics,15, 1–46.Google Scholar
  32. Mielnik, B. (1974). Generalized Quantum Mechanics.Communications on Mathematical Physics,37, 221–256.Google Scholar
  33. Piron, C. (1976).Foundations of Quantum Physics. W. A. Benjamin, Reading, Massachusetts.Google Scholar
  34. Primas, H. (1981).Chemistry, Quantum Mechanics and Reductionism. Springer-Verlag, Berlin.Google Scholar
  35. Rüttimann, F. (1981). Expectation functional of observables and counters, in14th Symposium on Mathematical Physics, Torun, December 8–11.Google Scholar
  36. Summhammer, J., Badurek, G., and Rauch, H. (1983). Direct observation of fermion spin superposition by neutron interferometry,Physical Review A,27.Google Scholar
  37. Schaefer, H. H. (1971).Topological Vector Spaces. Springer-Verlag, Berlin.Google Scholar
  38. Schaefer, H. H. (1974).Orderings of Vector Spaces. Lecture Notes in Physics, No. 29, 4–10. Springer-Verlag, Berlin.Google Scholar
  39. Varadaraja, V. S. (1968).Geometry of Quantum Theory, I. Van Nostrand Reinhold Company, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Pekka J. Lahti
    • 1
  • Slawomir Bugajski
    • 2
  1. 1.Department of Physical SciencesUniversity of TurkuTurkuFinland
  2. 2.KatowicePoland

Personalised recommendations