Advertisement

International Journal of Theoretical Physics

, Volume 33, Issue 9, pp 1869–1883 | Cite as

Chaotic motion of a rigid rotator

  • F. M. El Sabaa
Article
  • 29 Downloads

Keywords

Field Theory Elementary Particle Quantum Field Theory Chaotic Motion Rigid Rotator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applerot, G. (1893). Some additions of paper N. Delone, “Algebraic integrals of a heavy rigid body about fixed point,”Troda Otedelenii Fizicheskikh Obshchestve Liubitelei Estesvoznaii a.G.,1893, 1.Google Scholar
  2. Arnold, V. (1963).Russian Mathematical Survey,18, 581.Google Scholar
  3. Barkin, Iu., and Ievlev, E. (1977).Prikladnia Matematike Mekhanike,41, 574.Google Scholar
  4. Birkhoff, G. (1927).Dynamical Systems, American Mathematical Society, New York.Google Scholar
  5. Demin, V., and Kiselev, F. (1974).Prikladnia Matematike Mekhanike,38, 225.Google Scholar
  6. Deprit, A. (1967).American Journal of Physics,35, 224.Google Scholar
  7. El Sabaa, F. (1989a).Astrophysics and Space Science,162, 235.Google Scholar
  8. El Sabaa, F. (1989b).Journal of the University of Kuwait (Science),16, 21.Google Scholar
  9. El Sabaa, F. (n.d.). Regular and chaotic motion in the Kovaleveskaya problem,Celestial Mechanics, in press.Google Scholar
  10. Euler, L. (1758).Memoires de l'Academie des Science de Berlin,14, 154.Google Scholar
  11. Hénon, H., and Heiles, C. (1964).Astronomical Journal,69, 73.Google Scholar
  12. Kolmogorov, A. (1954).Doklady Akademii Nauk SSSR,98, 527.Google Scholar
  13. Kozlov, V. (1980).Qualitative Analysis Method in Dynamics of a Rigid Body, Moscow State University Press, Moscow.Google Scholar
  14. Lagrange, J. (1888).Mecanique Analytique, Gauthier-Villars, Paris.Google Scholar
  15. Lyapunov, A. (1966).Stability of Motion, Academic Press, New York.Google Scholar
  16. Moser, J. (1973).Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, New Jersey.Google Scholar
  17. Poincaré, H. (1975).Methods Nouvelles de la Mecanique, Dover, New York.Google Scholar
  18. Yahya, H. (1976). On lowering the order of the differential equations of motion of a solid about a fixed point,Vestnik MGV Seriya Mathematike Mekhanike, No. 6.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • F. M. El Sabaa
    • 1
  1. 1.Department of Mathematics, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations