Skip to main content

Unified gravitational and Yang-Mills fields

Abstract

We unify the gravitational and Yang-Mills fields by extending the diffeomorphisms in (N=4+n)-dimensional space-time to a larger group, called the conservation group. This is the largest group of coordinate transformations under which conservation laws are covariant statements. We present two theories that are invariant under the conservation group. Both theories have field equations that imply the validity of Einstein's equations for general relativity with the stress-energy tensor of a non-Abelian Yang-Mills field (with massive quanta) and associated currents. Both provide a geometrical foundation for string theory and admit solutions that describe the direct product of a compactn-dimensional space and flat four-dimensional space-time. One of the theories requires that the cosmological constant shall vanish. The conservation group symmetry is so large that there is reason to believe the theories are finite or renormalizable.

This is a preview of subscription content, access via your institution.

References

  • Appelquist, T., Chodos, A., and Freund, P. G. O. (1987).Modern Kaluza-Klein Theories, Addison-Wesley, Redwood City, California.

    Google Scholar 

  • Davies, P. C. W., and Brown, J. R., eds. (1988).Superstrings: A Theory of Everything? Cambridge University Press, Cambridge.

    Google Scholar 

  • Dirac, P. A. M. (1930).The Principles of Quantum Mechanics, 1st ed., Cambridge University Press, Cambridge, Preface.

    Google Scholar 

  • Dirac, P. A. M. (1978).Directions in Physics, Wiley, New York, p. 41.

    Google Scholar 

  • Eddington, A. (1924).The Mathematical Theory of Relativity, Cambridge University Press, Cambridge, p. 225.

    Google Scholar 

  • Einstein, A. (1949). InAlbert Einstein: Philosopher-Scientist, P. A. Schilpp, ed., Harper & Brothers, New York, Vol. I, p. 89.

    Google Scholar 

  • Eisenhart, L. P. (1925).Riemannian Geometry, Princeton University Press, Princeton, New Jersey, p. 97.

    Google Scholar 

  • Finkelstein, D. (1981). Private communication.

  • Glashow, S. L., and Gell-Mann, M. (1961).Annals of Physics,15, 437–460.

    Google Scholar 

  • Green, E. L. (1991). Private communication.

  • Hatfield, B. (1992).Quantum Field Theory of Point Particles and Strings, Addison-Wesley, Redwood City, California, p. 692.

    Google Scholar 

  • Mandelstam, S. (1962).Annals of Physics,19, 1–24.

    Google Scholar 

  • Pandres, D., Jr. (1962).Journal of Mathematical Physics,3, 602–607.

    Google Scholar 

  • Pandres, D., Jr. (1973).Lettere el Nuovo Cimento,8, 595–599.

    Google Scholar 

  • Pandres, D., Jr. (1977).Foundations of Physics,7, 421–430.

    Google Scholar 

  • Pandres, D., Jr. (1981).Physical Review D,24, 1499–1508.

    Google Scholar 

  • Pandres, D., Jr. (1984a).Physical Review D,30, 317–324.

    Google Scholar 

  • Pandres, D., Jr. (1984b).International Journal of Theoretical Physics,23, 839–842.

    Google Scholar 

  • Schrödinger, E. (1950).Space-Time Structure, Cambridge University Press, Cambridge, p. 97.

    Google Scholar 

  • Synge, J. L. (1960).Relativity: The General Theory, North-Holland, Amsterdam, p. 14.

    Google Scholar 

  • Witten, E. (1988). InSuperstrings: A Theory of Everything?, P. C. W. Davies and J. Brown, eds., Cambridge University Press, Cambridge, p. 90.

    Google Scholar 

  • Yang, C. N., and Mills, R. L. (1954).Physical Review,96, 191–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pandres, D. Unified gravitational and Yang-Mills fields. Int J Theor Phys 34, 733–759 (1995). https://doi.org/10.1007/BF00671020

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00671020

Keywords

  • Field Theory
  • General Relativity
  • Quantum Field Theory
  • String Theory
  • Group Symmetry