Skip to main content
Log in

Mott's cloud-chamber theory made explicit and the relative-collapse interpretation of quantum mechanics thus obtained

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is pointed out that the concept of a shiftable split between object and subject with a well-defined subject, introduced and utilized in two preceding articles of the author, is present in Mott's historical cloud-chamber measurement theory. The crucial question of the occurrence of the subject events (the main constituents of the subject) is also given a tacit answer in Mott's text. When Mott's theory is made sufficiently explicit, the object-subject complementarity principle (an elaborated form of Bohr's macroscopic complementarity principle) emerges. The (individual-system) relative-collapse postulate, which appears as a natural completion of Born's (ensemble) postulate, takes form in it. The proposed interpretation is compared with the many-worlds and the modal approaches, which share with the former the idea of nondestruction of coherence (in contrast to interpretations that contain the idea of an absolute, i.e., observer-independent collapse, which destroys coherence irrevocably).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, J. (1987). The theory of local beables, inSpeakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, pp. 52–63.

    Google Scholar 

  • Bell, J. (1990). Against “measurement”,Physics World,1990(August), 33–40.

    Google Scholar 

  • Bohr, N. (1961).Atomic Physics and Human Knowledge, Science Editions, New York, p. 50.

    Google Scholar 

  • Born, M. (1926).Zeitschrift für Physik,38, 803.

    Google Scholar 

  • Broyles, A. A. (1992).Physical Review A,45, 4925–4931.

    Google Scholar 

  • Broyles, A. A. (1993).Physical Review A,48, 1055–1065.

    Google Scholar 

  • D'Espagnat, B. (1976).Conceptual Foundations of Quantum Mechanics, 2nd ed., Benjamin, Reading, Massachusetts, Subsection 7.2.

    Google Scholar 

  • Dieks, D. (1985).Physics Letters,108A, 379–383.

    Google Scholar 

  • Dieks, D. (1993).International Journal of Theoretical Physics,32, 2363–2375.

    Google Scholar 

  • Dieks, D. (1994).Physical Review A,49, 2290–2300.

    Google Scholar 

  • Everett, H., III. (1957).Reviews of Modem Physics,29, 454–465.

    Google Scholar 

  • Furry, W. H. (1936).Physical Review,49, 393–399.

    Google Scholar 

  • Gleason, A. M. (1957).Journal of Mathematics and Mechanics,6, 885–893.

    Google Scholar 

  • Hadjisavvas, N. (1981).Letters on Mathematical Physics,5, 327–332.

    Google Scholar 

  • Heisenberg, W. (1942).Die Physikalischen Prinzipien der Quantentheorie, Hirzel, Leipzig, Section V.1.

    Google Scholar 

  • Herbut, F. (1990). Collapse in relative-states quantum measurement theory without the many-worlds assumption, inSymposium on the Foundations of Modern Physics, World Scientific, Singapore, pp. 138–147.

    Google Scholar 

  • Herbut, F. (1991).Journal of Physics A,24, 1785–1800.

    Google Scholar 

  • Herbut, F. (1993a).International Journal of Theoretical Physics,32, 1153–1171.

    Google Scholar 

  • Herbut, F. (1993b).International Journal of Theoretical Physics,32, 1173–1186.

    Google Scholar 

  • Herbut, F., and Vujičić, M. (1976).Annals of Physics,96, 382–405.

    Google Scholar 

  • Jammer, M. (1974).The Philosophy of Quantum Mechanics, Wiley, New York, Chapter 5.

    Google Scholar 

  • Joos, E., and Zeh, H. D. (1985).Zeitschrift für Physik B,59, 223–243.

    Google Scholar 

  • Lüders, G. (1951).Annalen der Physik,8, 322–328.

    Google Scholar 

  • Messiah, A. (1961).Quantum Mechanics, Vol. I, North-Holland, Amsterdam, p. 333.

    Google Scholar 

  • Moldauer, P. A. (1972).Physical Review D,5, 1028–1032.

    Google Scholar 

  • Mott, N. (1929).Proceedings of the Royal Society, London, A 126, 79–84.

    Google Scholar 

  • Schrödinger, E. (1935).Proceedings of the Cambridge Philosophical Society,31, 555–563.

    Google Scholar 

  • Shimony, A. (1963).American Journal of Physics,31, 755–773.

    Google Scholar 

  • Squires, E. J. (1990). An attempt to understand the many-worlds interpretation of quantum theory, inQuantum Theory without Reduction, M. Cini and J.-M. Lévy-Leblond, eds., Adam Hilger, Bristol.

    Google Scholar 

  • Von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey, Chapter VI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbut, F. Mott's cloud-chamber theory made explicit and the relative-collapse interpretation of quantum mechanics thus obtained. Int J Theor Phys 34, 679–700 (1995). https://doi.org/10.1007/BF00671016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00671016

Keywords

Navigation