International Journal of Theoretical Physics

, Volume 30, Issue 9, pp 1217–1227 | Cite as

Informationally complete sets of physical quantities

  • Paul Busch


The notion of informational completeness is formulated within the convex state (or operational) approach to statistical physical theories and employed to introduce a type of statistical metrics. Further, a criterion for a set of physical quantities to be informationally complete is proven. Some applications of this result are given within the algebraic and Hilbert space formulations of quantum theory.


Hilbert Space Field Theory Elementary Particle Quantum Field Theory Quantum Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbati, M. C., and Mania, A. (1981).Annales de l'Institut Henri Poincaré,XXXV, 259–285.Google Scholar
  2. Alfsen, E. M. (1971).Compact Convex Sets and Boundary Integrals, Springer, Berlin.Google Scholar
  3. Ali, S. T. (1985).Nuovo Cimento,8, 1–128.Google Scholar
  4. Ali, S. T., and Doebner, H. D. (1976).Journal of Mathematical Physics,17, 1105–1111.Google Scholar
  5. Ali, S. T., and Prugovecki, E. (1977a).Journal of Mathematical Physics,18, 219–228.Google Scholar
  6. Ali, S. T., and Prugovecki, E. (1977b).Physica,89A, 501–521.Google Scholar
  7. Busch, P. (1987a). Unsharp reality and the question of quantum systems, inSymposium on the Foundations of Modem Physics 1987, P. Lahti and P. Mittelstaedt, eds., World Scientific, Singapore, pp. 105–125.Google Scholar
  8. Busch, P. (1987b).Foundations of Physics,17, 905–937.Google Scholar
  9. Busch, P., and Lahti, P. J. (1989).Foundations of Physics,19, 633–678.Google Scholar
  10. Busch, P., and Schroeck, F. E., Jr. (1989).Foundations of Physics,19, 807–872.Google Scholar
  11. Busch, P., Cassinelli, G., and Lahti, P. J. (1990). Sigma-convex structures and classical embeddings of quantum mechanical state spaces, in preparation.Google Scholar
  12. Busch, P., Grabowski, M., and Lahti, P. J. (1989).Foundations of Physics Letters,2, 331–345.Google Scholar
  13. Davies, E. B. (1976).Quantum Theory of Open Systems, Academic Press, New York.Google Scholar
  14. De Muynck, W. M., and Martens, H. (1990). Nonideal quantum measurements, simultaneous measurements of noncommuting observables, and the Bell inequalities, inFoundations of Quantum Mechanics in the Light of New Technology, Physical Society of Japan.Google Scholar
  15. Grabowski, M. (1991). Quantum measurement scheme and new examples of generalized observables, inSymposium on the Foundations of Modern Physics 1990, P. Lahti and P. Mittelstaedt, eds., World Scientific, Singapore, pp. 124–137.Google Scholar
  16. Gudder, S. P. (1973).Communications in Mathematical Physics,29, 249–264.Google Scholar
  17. Hadjisavvas, N. (1981).Annales de l'Institut Henri Poincaré,XXXV, 287–309.Google Scholar
  18. Healy, D. M., and Schroeck, F. E., Jr. (1988). Application of stochastic quantum mechanics and coherent state methodologies to signal processing, Florida Atlantic University Preprint.Google Scholar
  19. Jauch, J. M., Misra, B., and Gibson, A. G. (1968). On the asymptotic condition of scattering theory,Helvetica Physica Acta,41, 513–527.Google Scholar
  20. Ludwig, G. (1983).Foundations of Quantum Mechanics, Vol. 1 (Springer, Berlin).Google Scholar
  21. Ludwig, G. (1987).An Axiomatic Basis for Quantum Mechanics, Vol. 2:Quantum Mechanics and Macrosystems (Springer, Berlin).Google Scholar
  22. Ozawa, M. (1984).Journal of Mathematical Physics,25, 79–87.Google Scholar
  23. Prugovecki, E. (1977).International Journal of Theoretical Physics,16, 321–331.Google Scholar
  24. Prugovecki, E. (1986).Stochastic Quantum Mechanics and Quantum Spacetime, 2nd ed., Reidel, Dordrecht.Google Scholar
  25. Rudin, W. (1973).Functional Analysis, McGraw-Hill, New York.Google Scholar
  26. Schroeck, F. E., Jr. (1981).Journal of Mathematical Physics,22, 2562–2572.Google Scholar
  27. Schroeck, F. E., Jr. (1988). On integration with respect to a positive operator valued measure, Florida Atlantic University Preprint.Google Scholar
  28. Schroeck, F. E., Jr. (1989).International Journal of Theoretical Physics,28, 247–262.Google Scholar
  29. Schroeck, F. E., Jr. (1990).Quantum Mechanics on Phase Space, Monograph in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Paul Busch
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologneGermany

Personalised recommendations