Advertisement

Homotopically nontrivial solutions for a spherically symmetric gravitational field

  • Tina A. Harriott
  • J. G. Williams
Article
  • 30 Downloads

Abstract

The structure of kink solutions to the Einstein field equations is discussed and the most general form of spherically symmetric kink metric is constructed. A number of fluid solutions are investigated and an imperfect fluid solution with nonzero heat conduction is presented.

Keywords

Field Theory Elementary Particle Quantum Field Theory Heat Conduction Field Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann, P. G. (1942).Introduction to the Theory of Relativity. Prentice-Hall, Englewood Cliffs, New Jersey, Chapter 13.Google Scholar
  2. Blau, S. K., and Guth, A. H. (1987). Inflationary Cosmology, inThree Hundred Years of Gravitation, S. W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge, England.Google Scholar
  3. Bugajska, K. (1987).International Journal of Theoretical Physics,26, 623.Google Scholar
  4. Clément, G. (1984a).General Relativity and Gravitation,16, 131.Google Scholar
  5. Clément, G. (1984b).General Relativity and Gravitation,16, 477.Google Scholar
  6. Clément, G. (1984c).General Relativity and Gravitation,16, 491.Google Scholar
  7. Clément, G. (1986).General Relativity and Gravitation,18, 137.Google Scholar
  8. Dunn, K. A., and Williams, J. G. (1989).Journal of Mathematical Physics,30, 87.Google Scholar
  9. Ellis, G. F. R. (1971). Relativistic Cosmology, inProceedings of the International School of Physics “Enrico Fermi”, Course XLVII—General Relativity and Cosmology, B. K. Sachs, ed., Academic Press, New York.Google Scholar
  10. Finkelstein, D. (1978). The Delinearization of Physics, inProceedings of the Symposium on the Foundations of Modern Physics V. Karimäki, ed., University of Joensuu, Joensuu, Finland.Google Scholar
  11. Finkelstein, D., and McCollum, G. (1975).Journal of Mathematical Physics,16, 2250.Google Scholar
  12. Finkelstein, D., and Misner, C. W. (1959).Annals of Physics,6, 230.Google Scholar
  13. Finkelstein, D., and Williams, J. G. (1984).International Journal of Theoretical Physics,23, 61.Google Scholar
  14. Geroch, R., and Horowitz, G. T. (1979). Global Structure of Spacetimes, inGeneral Relativity-An Einstein Centenary Survey, S. W. Hawking and W. Israel, ed., Cambridge University Press, Cambridge, England, pp. 222–224.Google Scholar
  15. Guth, A. H. (1981).Physical Review D,23, 347.Google Scholar
  16. Harriott, T. A., and Williams, J. G. (1986).Journal of Mathematical Physics,27, 2706.Google Scholar
  17. Harriott, T. A., and Williams, J. G. (1988a).Journal of Mathematical Physics,29, 179.Google Scholar
  18. Harriott, T. A., and Williams, J. G. (1988b). Homotopically Nontrivial Metric for a Perfect Fluid, inProceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics. A. Coley, C. Dyer, and T. Tupper, eds., World Scientific, Singapore.Google Scholar
  19. Isham, C. J. (1981). Quantum Gravity—An Overview, inQuantum Gravity 2—A Second Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds., Oxford University Press, Oxford, pp. 28–29.Google Scholar
  20. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, Freeman, San Francisco, pp. 311, 567.Google Scholar
  21. Pacher, T., Stein-Schabes, J. A., and Turner, M. S. (1987).Physical Review D,36, 1603.Google Scholar
  22. Perlis, S. (1952).Matrix Theory, Addison-Wesley, Reading, Massachusetts, pp. 203–205.Google Scholar
  23. Rosen, N. (1983). The Field of a Particle in General Relativity Theory, inUnified Field Theories of More Than 4 Dimensions—Including Exact Solutions, Proceedings of the “Ettore Majorana” International School of Cosmology and Gravitation, V. De Sabbata and E. Schmutzer, eds., World Scientific, Singapore.Google Scholar
  24. Rosen, N. (1985).Foundations of Physics,15, 517.Google Scholar
  25. Shastri, A. R., Williams, J. G., and Zvengrowski, P. (1980).International Journal of Theoretical Physics,19, 1.Google Scholar
  26. Skyrme, T. H. R. (1961).Proceedings of the Royal Society of London, Series A,260, 127.Google Scholar
  27. Skyrme, T. H. R. (1971).Journal of Mathematical Physics,12, 1735.Google Scholar
  28. Steenrod, N. (1951).The Topology of Fibre Bundles, Princeton University Press, Princeton, New Jersey, Chapter 40.Google Scholar
  29. Williams, J. G. (1970).Journal of Mathematical Physics,11, 2611.Google Scholar
  30. Williams, J. G. (1971).Journal of Mathematical Physics,12, 308.Google Scholar
  31. Williams, J. G. (1985).Lettere al Nuovo Cimento,43, 282.Google Scholar
  32. Williams, J. G., and Zia, R. K. P. (1973).Journal of Physics A,6, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Tina A. Harriott
    • 1
  • J. G. Williams
    • 2
  1. 1.Department of MathematicsMount Saint Vincent UniversityHalifaxCanada
  2. 2.Department of Mathematics and Computer ScienceBrandon UniversityBrandonCanada

Personalised recommendations