Skip to main content
Log in

The nonsymmetric Kaluza-Klein (Jordan-Thiry) theory in the electromagnetic case

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present the nonsymmetric Kaluza-Klein and Jordan-Thiry theories as interesting propositions of physics in higher dimensions. We consider the five-dimensional (electromagnetic) case. The work is devoted to a five-dimensional unification of the NGT (nonsymmetric theory of gravitation), electromagnetism, and scalar forces in a Jordan-Thiry manner. We find “interference effects” between gravitational and electromagnetic fields which appear to be due to the skew-symmetric part of the metric. Our unification, called the nonsymmetric Jordan-Thiry theory, becomes the classical Jordan-Thiry theory if the skew-symmetric part of the metric is zero. It becomes the classical Kaluza-Klein theory if the scalar fieldρ=1 (Kaluza's Ansatz). We also deal with material sources in the nonsymmetric Kaluza-Klein theory for the electromagnetic case. We consider phenomenological sources with a nonzero fermion current, a nonzero electric current, and a nonzero spin density tensor. From the Palatini variational principle we find equations for the gravitational and electromagnetic fields. We also consider the geodetic equations in the theory and the equation of motion for charged test particles. We consider some numerical predictions of the nonsymmetric Kaluza-Klein theory with nonzero (and with zero) material sources. We prove that they do not contradict any experimental data for the solar system and on the surface of a neutron star. We deal also with spin sources in the nonsymmetric Kaluza-Klein theory. We find an exact, static, spherically symmetric solution in the nonsymmetric Kaluza-Klein theory in the electromagnetic case. This solution has the remarkable property of describing “mass without mass” and “charge without charge.” We examine its properties and a physical interpretation. We consider a linear version of the theory, finding the electromagnetic Lagrangian up to the second order of approximation with respect toh μv =g μv n μv . We prove that in the zeroth and first orders of approximation there is no skewonoton interaction. We deal also with the Lagrangian for the scalar field (connected to the “gravitational constant”). We prove that in the zeroth and first orders of approximation the Lagrangian vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaluza, T., Zum Unitätsproblem der Physik,Sitzgsberichte der Preussiche Akademie der Wissenschaften,192, 966.

  2. Klein, O.,Zeitschrift für Physik,37, 895 (1926); Klein, O., On the theory of charged fields, inNew Theories in Physics (Conference Organized in Collaboration with International Union of Physics and the Polish Co-operation Committee, Warsaw, May 30th–June 3rd, 1938), Paris (1939), p. 77.

    Google Scholar 

  3. Einstein, A.,The Meaning of Relativity, 5th ed., rev., Methuen, London (1951), Appendix II, p. 127; Jakubowicz, A., and Klekowska, J.,Tensor N.S.,20, 72 (1969); Chung, K. T., and Lee, Y. J.,International Journal of Theoretical Physics,27, 1083 (1988); Chung, K. T., and Hwang, H. J.,International Journal of Theoretical Physics,27, 1105 (1988); Shavokhina, N. S., Nonsymmetric metric in nonlinear field theory, preprint of the JINR, P2-86-685, Dubna (1986).

    Google Scholar 

  4. Kaufman, B.,Helvetica Physica Acta Suppl. 1956, 227; Chung, K. T.,Acta Mathematica Hungarica,41(1–2), 47 (1983).

  5. Einstein, A., and Kaufman, B.,Annals of Mathematics,59, 230 (1954); Kaufman, B.,Annals of Mathematics,46, 578 (1945).

    Google Scholar 

  6. Einstein, A.,Annals of Mathematics,46, 578 (1945); Einstein, A., and Strauss, E. G.,Annals of Mathematics,47, 731 (1946).

    Google Scholar 

  7. Kerner, R.,Annales de l'Institut Henri Poincaré,IX, 143 (1968).

    Google Scholar 

  8. Cho, Y. M.,Journal of Mathematical Physics,16, 2029 (1975); Cho, Y. M., and Freund, P. G. O.,Physical Review D,12, 1711 (1975).

    Google Scholar 

  9. Kopczyski, W., A fibre bundle description of coupled gravitational and gauge fields, inDifferential Geometrical Methods in Mathematical Physics, Springer-Verlag, Berlin (1980), p. 462.

    Google Scholar 

  10. Kalinowski, M. W.,International Journal of Theoretical Physics,22, 385 (1983).

    Google Scholar 

  11. Thirring, W.,Acta Physica Austriaca Suppl. IX 1972, 256.

  12. Kalinowski, M. W.,Acta Physica Austriaca,53, 229 (1981).

    Google Scholar 

  13. Kalinowski, M. W.,International Journal of Theoretical Physics,23, 131 (1984).

    Google Scholar 

  14. Kalinowski, M. W.,Acta Physica Austriaca,55, 197 (1983).

    Google Scholar 

  15. Kalinowski, M. W.,Journal of Physics A (Mathematical and General),15, 2441 (1982).

    Google Scholar 

  16. Kalinowski, M. W.,International Journal of Theoretical Physics,20, 563 (1981).

    Google Scholar 

  17. Einstein, A.,Annalen der Physik,17, 891 (1905).

    Google Scholar 

  18. Kalinowski, M. W.,Journal of Mathematical Physics,24, 1835 (1983).

    Google Scholar 

  19. Kalinowski, M. W.,Canadian Journal of Physics,61, 844 (1983).

    Google Scholar 

  20. Jordan, P.,Schwerkraft und Weltal, Vieweg, Braunschweig (1955).

    Google Scholar 

  21. Thirry, Y.,Étude matématique de equations d'une theorie unitare à quinze variables de champ, Gautiers-Villars (1951).

  22. Lichnerowicz, A.,Theorie relativistes de la gravitation et de l'electromagnetisme, Masson, Paris (1955).

    Google Scholar 

  23. Kalinowski, M. W.,Journal of Physics A (Mathematical and General),16, 1669 (1983).

    Google Scholar 

  24. Kalinowski, M. W.,Nuovo Cimenta,LXXXA, 47 (1984).

    Google Scholar 

  25. Kalinowski, M. W.,Journal of Mathematical Physics,25, 1045 (1984).

    Google Scholar 

  26. Kalinowski, M. W.,Annals of Physics,148, 241 (1983).

    Google Scholar 

  27. Kalinowski, M. W.,Fortschritte der Physik,34, 361 (1986).

    Google Scholar 

  28. Kalinowski, M. W., and Mann, R. B.,Classical and Quantum Gravity,1, 157 (1984).

    Google Scholar 

  29. Kalinowski, M. W., and Mann, R. B.,Nuovo Cimento,91B, 67 (1986).

    Google Scholar 

  30. Kalinowski, M. W., and Kunstatter, G.,Journal of Mathematical Physics,25, 117 (1984).

    Google Scholar 

  31. Mann, R. B.,Journal of Mathematical Physics,26, 2308 (1985).

    Google Scholar 

  32. Kalinowski, M. W.,International Journal of Theoretical Physics,26, 21 (1987).

    Google Scholar 

  33. Kalinowski, M. W.,International Journal of Theoretical Physics,26, 565 (1987).

    Google Scholar 

  34. Moffat, J. W., Generalized theory of gravitation and its physical consequences, inProceedings of the VII International School of Gravitation and Cosmology. Erice, V. de Sabbata, ed., World Scientific, Singapore (1982), p. 127.

    Google Scholar 

  35. Kunstatter, G., Moffat, J. W., and Malzan, J.,Journal of Mathematical Physics,24, 886 (1983).

    Google Scholar 

  36. Hilbert, D.,Göttingen Nachrichten,12 (1916).

  37. Levi-Civita, T.,Atti R Accademia Nazionale dei Lincei Classe de Scienze Fisichi, Matematiche e Naturali. Memorie,26, 311 (1917); Thiry, Y.,Journal de Mathematiques Pure et Appliquees,30, 275 (1951).

    Google Scholar 

  38. Lichnerowicz, A.,Sur certains problems globaux relatifs au systeme des equations d'Einstein, Hermann, Paris (1939).

    Google Scholar 

  39. Einstein, A., and Pauli, W.,Annals of Mathematics,44, 131 (1943); Einstein, A.,Revista Universidad Nacional Tucumán,2, 11 (1941).

    Google Scholar 

  40. Werder, R.,Physical Review D,25, 2515 (1982); Bartnik, R., and McKinnon, J.,Physical Review Letters,61, 141 (1988).

    Google Scholar 

  41. Kunstatter, G.,Journal of Mathematical Physics,25, 2691 (1984).

    Google Scholar 

  42. Roseveare, N. T..Mercury's Perihilion: From Le Vertier to Einstein, Clarendon Press, Oxford (1982).

    Google Scholar 

  43. Hlavaty, V.,Geometry of Einstein's Unified Field Theory, Nordhoff-Verlag, Groningen (1957); Tonnelat, M. A.,Einstein's Unified Field Theory, Gordon and Breach, New York (1966).

    Google Scholar 

  44. Hill, H. A., Bos, R. J., and Goode, P. R.,Physical Review Letters,33, 709 (1983); Hill, H. A.,International Journal of Theoretical Physics,23, 689 (1984); Gough, D. O.,Nature,298, 334 (1982).

    Google Scholar 

  45. Moffat, J. W.,Physical Review Letters,50, 709 (1983); Campbell, L., Moffat, J. B.,Astrophysical Journal,275, L77 (1983).

    Google Scholar 

  46. Moffat, J. W., The orbit of Icarus as a test of a theory of gravitation, University of Toronto preprint (1982); Campbell, L., McDow, J. C., Moffat, J. W., and Vincent, D.,Nature,305, 508 (1983).

  47. Moffat, J. W.,Foundation of Physics,14, 1217 (1984); Moffat, J. W., Test of a theory of gravitation using the data from the binary pulsar 1913+16, University of Toronto Report (1981); Kisher, T. P.,Physical Review D,32, 329 (1985); Will, M. C.,Physical Review Letters,62, 369 (1989).

    Google Scholar 

  48. Moffat, J. W., Experimental consequences of the nonsymmetric gravitation theory including the apsidal motion of binaries, Lecture given at the Conference on General Relativity and Relativistic Astrophysics, University of Dalhousie, Halifax, Nova Scotia (1985).

    Google Scholar 

  49. McDow, J. C., Testing the nonsymmetric theory of gravitation, Ph.D. thesis, University of Toronto (1983); Hoffman, J. A., Masshal, H. L., and Lewin, W. G. H.,Nature,271, 630 (1978).

  50. Bergmann, P. G.,International Journal of Theoretical Physics,1, 52 (1968).

    Google Scholar 

  51. Trautman, A.,Reports of Mathematical Physics,1, 29 (1970).

    Google Scholar 

  52. Utiyama, R.,Physical Review,101, 1597 (1956).

    Google Scholar 

  53. Stacey, F. D., Tuck, G. J., Moore, G. J., Holding, S. C., Goldwin, B. D., and Zhou, R.,Reviews of Modern Physics,59, 157 (1987); Ander, M. E., Goldman, T., Hughs, R. J., and Nieto, M. M.,Physical Review Letters,60, 1225 (1988); Eckhardt, D. H., Jekeli, C., Lazarewicz, A. R., Romaides, A. J., and Sands, R. W.,Physical Review Letters,60, 2567 (1988); Moore, G. I., Stacey, F. D., Tuck, G. J., Goodwin, B. D., Linthorne, N. P., Barton, M. A., Reid, D. M., and Agnew, G. D.,Physical Review D,38, 1023 (1988).

    Google Scholar 

  54. Fischbach, E., Sudarsky, D., Szafer, A., Tolmadge, C., and Arnson, S. H.,Physical Review Letters,56, 3 (1985).

    Google Scholar 

  55. Thieberg, P.,Physical Review Letters,58, 1066 (1987).

    Google Scholar 

  56. Wesson, P. S.,Physics Today,33, 32 (1980).

    Google Scholar 

  57. Gillies, G. T., and Ritter, R. C., Experiments on variation of the gravitational constant using precision rotations, inPrecision Measurements and Fundamental Constants II, B. N. Taylor, and W. D. Phillips, eds., National Bureau of Standards (U.S.) Special Publication 617 (1984), p. 629.

  58. Rayski, J.,Acta Physica Polonica,XXVIII, 89 (1965).

    Google Scholar 

  59. Kobayashi, S., and Nomizu, K.,Foundation of Differential Geometry, New York (1963); Kobayashi, S.,Transformation Groups in Differential Geometry, Springer-Verlag, Berlin (1972).

  60. Lichnerowicz, A.,Théorié globale des connexions et de group d'holonomie, Cremonese, Rome (1955).

    Google Scholar 

  61. Hermann, R.,Yang-Mills, Kaluza-Klein and the Einstein Program, Mathematical Science Press, Brookline, Massachusetts (1978); Coquereaux, R., and Jadczyk, A.,Riemannian Geometry, Fibre Bundle, Kaluza-Klein Theory and All That..., World Scientific, Singapore (1988).

    Google Scholar 

  62. Zalewski, K.,Lecture on Rotational Group, PWN, Warsaw (1987) [in Polish]; Barut, A. O., and Raczka, R.,Theory of Group Representations and Applications, PWN, Warsaw (1980).

    Google Scholar 

  63. Moffat, J. W.,Physical Review D,19, 3557 (1979).

    Google Scholar 

  64. Moffat, J. W.,Physical Review D,23 2870 (1981).

    Google Scholar 

  65. Moffat, J. W., Woolgar, E., The Apsidal Motion of the Binary Star in the Nonsymmetric Gravitational Theory, University of Toronto Report (1984); Moffat, J. W., The Orbital motion of DI Hercules As a Test of the Theory of Gravitation, University of Toronto Report (1984).

  66. De Groot, S. R., and Suttorp, R. G.,Foundations of Electrodynamics, North-Holland, Amsterdam (1972).

    Google Scholar 

  67. Plebański, J.,Nonlinear Electrodynamics, Nordita, Copenhagen (1970).

    Google Scholar 

  68. Kalinowski, M. W.,Letters in Mathematical Physics,5, 489 (1981); Kalinowski, M. W.,Acta Physica Austriaca,27, 45 (1958).

    Google Scholar 

  69. Kalinowski, M. W.,Zeitschrift für Physik C (Particles and Fields) 33, 76 (1986).

    Google Scholar 

  70. Hlavaty, V.,Journal of Rational Mechanics and Analysis,1, 539 (1952);2, 2, 223;4, 247, 654.

    Google Scholar 

  71. Wyman, M.,Canadian Journal of Mathematics,1950, 427.

  72. Lanczos, C.,The Variational Principles of Mechanics, University of Toronto Press, Toronto (1970).

    Google Scholar 

  73. Klotz, A. H.,Macrophysics and Geometry, Cambridge University Press, Cambridge (1983); Klotz, A. H.,Acta Physica Polonica B,19, 533 (1988).

    Google Scholar 

  74. Kalinowski, M. W.,Physical Review D,26, 3419 (1982).

    Google Scholar 

  75. Kuiper, G. P.,The Sun, University of Chicago Press, Chicago Illinois (1953).

    Google Scholar 

  76. Smith, F. G.,Pulsars, Cambridge University Press, Cambridge, New York (1977).

    Google Scholar 

  77. Arkuszewski, W., Kopczyński, W., and Ponomaviev, V. N.,Annales de l'Institut Henri Poincaré A,21, 89 (1974).

    Google Scholar 

  78. Mann, R. B., Investigations of an alternative theory of gravitation, Ph.D. thesis, University of Toronto, Toronto (1982).

    Google Scholar 

  79. Mann, R. B., and Moffat, J. W.,Journal of Physics A,14, 2367 (1981); Corrigenda,Journal of Physics A,15, 1055 (1982).

    Google Scholar 

  80. Moffat, J. W.,Physical Review D,19, 3562 (1978).

    Google Scholar 

  81. Moffat, J. W., and Boal, D. H.,Physical Review D,11, 1375 (1975).

    Google Scholar 

  82. Pant, N. D.,Nuovo Cimento,25B, 175 (1975).

    Google Scholar 

  83. Papapetrou, A.,Proceedings of the Royal Irish Academy,52, 96 (1948).

    Google Scholar 

  84. Bonnor, W. B.,Proceedings of the Royal Society,210, 427 (1951).

    Google Scholar 

  85. Bonnor, W. G.,Proceedings of the Royal Society,209, 353 (1951).

    Google Scholar 

  86. Vanstone, J. R.,Canadian Journal of Mathematics,14, 568 (1962).

    Google Scholar 

  87. Born, M., and Meld, L.,Proceedings of the Royal Society A,144, 425 (1934).

    Google Scholar 

  88. Abraham, M.,Annalen der Physik,10, 105 (1903); Cushing, J. T.,American Journal of Physics,49, 1133 (1981).

    Google Scholar 

  89. Campbell, L., and Moffat, J. W., Black Holes in the Nonsymmetric Theory of Gravitation, University of Toronto Report, Toronto (1982).

  90. Demianski, M.,Foundations of Physics,16, 187 (1986).

    Google Scholar 

  91. Wheeler, J. A.,Physical Review,97, 511 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinowski, M.W. The nonsymmetric Kaluza-Klein (Jordan-Thiry) theory in the electromagnetic case. Int J Theor Phys 31, 611–741 (1992). https://doi.org/10.1007/BF00670828

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670828

Keywords

Navigation