International Journal of Theoretical Physics

, Volume 27, Issue 2, pp 237–250 | Cite as

Copenhagen and transactional interpretations

  • Th. Görnitz
  • C. F. von Weizsäcker


The Copenhagen interpretation (CI) never received an authoritative codification. It was a “minimum semantics” of quantum mechanics. We assume that it expresses a theory identical with the Transactional Interpretation (TI) when the observer is included into the system described by the theory. A theory consists of a mathematical structure with a physical semantics. Now, CI rests on an implicit description of the modes of time which is also presupposed by the Second Law of Thermodynamics. Essential is the futuric meaning of probability as a prediction of a relative frequency. CI can be shown to be fully consistent on this basis. The TI and CI can be translated into each other by a simple “dictionary.” The TI describes all events as CI describes past events; CI calls future events possibilities, which TI treats like facts. All predictions of both interpretations agree; we suppose the difference to be linguistic.


Field Theory Elementary Particle Quantum Field Theory Quantum Mechanic Relative Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohr, N. (1928).Naturwissenschaften,16, 245.Google Scholar
  2. Born, M. (1926).Zeitschrift für Physik,38, 803.Google Scholar
  3. Carnap, R. (1963). InThe Philosophy of R. Carnapp, P. A. Schilpp, ed., Library of Living Philosophers, No. 11, La Salle, Illinois.Google Scholar
  4. Cramer, J. G. (1983).Foundations of Physics,13, 887.Google Scholar
  5. Cramer, J. G. (1986).Reviews of Modern Physics,58, 647.Google Scholar
  6. Deutsch, D. (1985).International Journal of Theoretical Physics,24, 1.Google Scholar
  7. Drieschner, M. (1970). Quantum mechanics as a general theory of objective prediction, Thesis, Hamburg.Google Scholar
  8. Drieschner, M. (1979).Voraussage, Wahrscheinlichkeit, Objekt, Springer Lecture Notes in Physics, No. 99, Berlin.Google Scholar
  9. Görnitz, Th., and Weizsäcker, C. F. v. (1987a). Remarks on S. Kochen's interpretations of quantum mechanics, paper submitted to the Symposium on the Foundations of Modern Physics, Joensuu.Google Scholar
  10. Görnitz, Th., and Weizsäcker, C. F. v. (1987b). Quantum interpretations,International Journal of Theoretical Physics,26, 921.Google Scholar
  11. Grünbaum, A. (1967). The anisotropy of time, inThe Nature of Time, T. Gold and D. L. Schuhmacher, eds., Cornell University Press, Ithaca. New York.Google Scholar
  12. Heisenberg, W. (1925).Zeitschrift für Physik,33, 879.Google Scholar
  13. Heisenberg, W. (1927).Zeitschrift für Physik,43, 172.Google Scholar
  14. Heisenberg, W. (1969).Der Teil und das Ganze, Chapter 5, Piper, Munich.Google Scholar
  15. Jammer, M. (1974).The Philosophy of Quantum Mechanics, Wiley, New York.Google Scholar
  16. Kochen, S. (1985). InSymposium on the Foundations of Modern Physics, P. Lathi and P. Mittelstädt, eds., World Scientific, Singapore.Google Scholar
  17. Popper, K. (1974). InThe Philosophy of Karl Popper, P. A. Schilpp, ed., Library of Living Philosophers, No. 14, La Salle, Illinois.Google Scholar
  18. Weizsäcker, C. F. v. (1939).Annalen der Physik,36, 275.Google Scholar
  19. Weizsäcker, C. F. v. (1971).Die Einheit der Natur, Hanser, Munich [The Unity of Nature, Farrar, Straus, Giroux, New York, 1980].Google Scholar
  20. Weizsäcker, C. F. v. (1985).Aufbau der Physik, Hanser, Munich.Google Scholar
  21. Wheeler, J. A., and Feynman, R. P. (1945).Reviews of Modern Physics,17, 157.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Th. Görnitz
    • 1
  • C. F. von Weizsäcker
    • 1
  1. 1.Arbeitsgruppe Afheldt in der Max-Planck-GesellschaftStarnbergFederal Republic of Germany

Personalised recommendations