International Journal of Theoretical Physics

, Volume 27, Issue 2, pp 133–158 | Cite as

Quantum insights from null-strut geometrodynamics

  • Arkady Kheyfets
  • Norman Joseph LaFave
  • Warner Allen Miller


We discuss quantum insights due to the null-strut formalism. These insights deal primarily with two topics: the formalism of a theory of canonical simplicial quantum gravity based on the geometrodynamic duality of null-strut calculus, and the natural implementation of spinors and spin networks in null-strut calculus.


Field Theory Elementary Particle Quantum Field Theory Quantum Gravity Spin Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnowitt, R., Deser, S., and Misner, C. W. (1962). InGravitation: An Introduction to Current Research, L. Witten, ed., Wiley, New York.Google Scholar
  2. Ashtekar, A. (1986a).Physical Review Letters,57(18), 2244.Google Scholar
  3. Ashtekar, A. (1986b). Preprint, Syracuse University.Google Scholar
  4. Biedenharn, L. C. (1953).Journal of Mathematical Physics,31, 287.Google Scholar
  5. Dirac, P. A. M. (1958).The Principles of Quantum Mechanics, Oxford University Press.Google Scholar
  6. Elliott, J. P. (1953).Proceedings of the Royal Society A, 218, 370.Google Scholar
  7. Finkelstein, D., and Rodriguez, E. (1986).Physica,18D, 197.Google Scholar
  8. Freedman, D. Z., and van Nieuwenhuizen, P. (1976).Physical Review D, 14, 912.Google Scholar
  9. Friedman, J. L., and Jack, I. (1986).Journal of Mathematical Physics,27(12), 2973.Google Scholar
  10. Hamber, H. W., and Williams, R. M. (1984).Nuclear Physics B, 248, 392.Google Scholar
  11. Hamber, H. W., and Williams, R. M. (1985).Physical Letters,157B(5,6), 368.Google Scholar
  12. Hamber, H. W., and Williams, R. M. (1986a).Nuclear Physics B, 267, 482.Google Scholar
  13. Hamber, H. W., and Williams, R. M. (1986b).Nuclear Physics B, 269, 712.Google Scholar
  14. Hartle, J. B. (1985).Journal of Mathematical Physics,26(4), 804.Google Scholar
  15. Hasslacher, B., and Perry, M. J. (1981).Physics Letters,103B(1), 21.Google Scholar
  16. Kheyfets, A., LaFave, N. J., and Miller, W. A. (1988), in preparation.Google Scholar
  17. Kuchar, K. V. (1986).Foundations of Physics,16(3), 193.Google Scholar
  18. Lee, T. D. (1984). Preprint, Columbia University.Google Scholar
  19. Lewis, S. M. (1983).Physics Letters,122B(3,4), 265.Google Scholar
  20. Miller, W. A. (1985). InProceedings of 1985 Drexel University Workshop on Dynamical Spacetimes and Numerical Relativity, J. Centrella, ed., Cambridge University Press.Google Scholar
  21. Miller, W. A. (1986a).Foundations of Physics,16(2), 143.Google Scholar
  22. Miller, W. A. (1986b). Dissertation, University of Texas at Austin.Google Scholar
  23. Misner, W., Thorne, K. S., and Wheeler, J. A. (1971).Gravitation, Freeman, San Francisco.Google Scholar
  24. Penrose, R. (1970). InQuantum Theory and Beyond, E. T. Bastin, ed., Cambridge University Press.Google Scholar
  25. Penrose, R. (1972). InMagic Without Magic: John Archibald Wheeler, J. R. Klauder, ed. Freeman, San Francisco.Google Scholar
  26. Penrose, R., and Rindler, W. (1984).Spinors and Space-Time, Cambridge University Press.Google Scholar
  27. Ponzano, G., and Regge, T. (1968). InSpectroscopic and Group Theoretical Methods in Physics, F. Bloch, S. Cohen, A. DeShalit, S. Sambursky, and I. Talmi, eds., North-Holland, Amsterdam.Google Scholar
  28. Schild, A. (1970). Unpublished lecture, Princeton Relativity Seminar.Google Scholar
  29. Tabensky, R., and Teitelboim, C. (1977).Physics Letters,69B(4), 453.Google Scholar
  30. York, J. (1987). Private communication.Google Scholar
  31. Yutsis, A. P., Levinson, I. B., and Vanagas, V. V. (1960).Theory of Angular Momentum, Israel Program for Scientific Translations, Jerusalem.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Arkady Kheyfets
    • 1
  • Norman Joseph LaFave
    • 2
  • Warner Allen Miller
    • 3
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleigh
  2. 2.Center for Relativity, Department of PhysicsUniversity of Texas at AustinAustin
  3. 3.Air Force Weapons LaboratoryKirtland Air Force BaseNew Mexico

Personalised recommendations