Skip to main content
Log in

Spinors and multivectors as a unified tool for spacetime geometry and for elementary particle physics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

From the definition of spinors as the minimal left (right) modules of multivectors (that is, of vectors and their outer products), we can construct a unified mathematical approach for the study of matter and its interaction fields, which are either defined as fields in the geometrical spacetime or considered as generators of the physical spacetime. It is also shown how matter and interaction fields can be represented either by spinor fields or by multivector fields, both types of fields carrying the same information as the traditional corresponding spinors, vectors, or tensors. Geometry is more transparent in one representation (multivector form), and physics is more obvious in the spinor representation. Our theory provides a unified and totally self-consistent representation of quarks (barions), leptons, and all their known interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akers, D. (1987).International Journal of Theoretical Physics,26, 613.

    Google Scholar 

  • Basri, S. A., and Barut, A. O. (1983).International journal of Theoretical Physics,22, 691–721.

    Google Scholar 

  • Boudet, R. (1985).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris), Serie II,300, 157.

    Google Scholar 

  • Brauer, R., and Weyl, H. (1935).American Journal of Mathematics,57, 425–449.

    Google Scholar 

  • Cartan, E. (1913).Bulletin Société Mathématique France,41, 53–96.

    Google Scholar 

  • Cartan, E. (1981).The Theory of Spinors, Dover, New York.

    Google Scholar 

  • Casalbuoni, R., and Gato, R. (1980).Physics Letters,90B, 81–88.

    Google Scholar 

  • Casanova, G. (1976).L'algebre vectorielle, Presses Universitaires de France, Paris.

    Google Scholar 

  • Chisholm, J. S. R., and Common, A. K., eds. (1986).Proceedings of the NATO and SERC Workshop on “Clifford Algebras and their Applications in Mathematical Physics” (Canterbury, England, 1985), Reidel, Dordrecht.

    Google Scholar 

  • Close, F. E. (1979).An Introduction to Quark and Partons, Academic Press, London.

    Google Scholar 

  • Crawford, J. P. (1985).Journal of Mathematical Physics,26, 1439–1441.

    Google Scholar 

  • Dirac, P. A. M. (1931).Proceedings of the Royal Society A,133, 60.

    Google Scholar 

  • Feynman, R., Leighton, R., and Sands, M. (1964).The Feynman Lectures on Physics, Addison-Wesley, Reading, Massachusetts, Volume II, Chapter 28.

    Google Scholar 

  • Field, R. D. (1979).Quantum Flavordynamics, Quantum Chromodynamics and Unified Theories (NATO Advanced Study Series, Series B, Physics, Volume 54), Plenum Press, New York.

    Google Scholar 

  • Finkelstein, D., Finkelstein, S. R., and Holm, C. (1986).International Journal of Theoretical Physics,25, 441–464.

    Google Scholar 

  • Fritzch, H., and Minkowski, P. (1974).Annals of Physics,93, 193.

    Google Scholar 

  • Georgi, H. (1975). InParticles and Fields, C. E. Carlson, ed., American Institute of Physics, New York.

    Google Scholar 

  • Georgi, H., and Glashow, S. L. (1974).Physical Review Letters,32, 438.

    Google Scholar 

  • Greenberg, O. W. (1964).Physical Review Letters,13, 598.

    Google Scholar 

  • Greenberg, O. W. (1982).American Journal of Physics,50, 1074.

    Google Scholar 

  • Halzen, F., and Martin, A. D. (1984).Quarks and Leptons, Wiley, New York.

    Google Scholar 

  • Hamilton, D. (1984).American Journal of Physics,52, 56.

    Google Scholar 

  • Hestenes, D. (1966).Spacetime Algebra, Gordon and Breach, New York.

    Google Scholar 

  • Hestenes, D. (1975).Journal of Mathematical Physics,16, 556, and references therein.

    Google Scholar 

  • Hestenes, D., and Sobczyk, G. (1984).Clifford Algebra to Geometric Calculus, Reidel, Dordrecht.

    Google Scholar 

  • Higbie, J. (1988).American Journal of Physics,56, 378–379.

    Google Scholar 

  • Huang, K. (1982).Leptons and Partons, Academic Press, London.

    Google Scholar 

  • Keller, J. (1981).Revista de la Sociedad Química de México,25, 28.

    Google Scholar 

  • Keller, J. (1982a).International Journal of Theoretical Physics,21, 829.

    Google Scholar 

  • Keller, J. (1982b). InProceedings on the Mathematics of the Physical Spacetime (Mexico 1982), J. Keller, ed., University of Mexico, p. 117.

  • Keller, J. (1984).International Journal of Theoretical Physics,23, 818.

    Google Scholar 

  • Keller, J. (1986a).International journal of Theoretical Physics,25, 779.

    Google Scholar 

  • Keller, J. (1986b). InProceedings of the NATO & SERC Workshop on “Clifford Algebras and their Applications in Mathematical Physics” (Canterbury, England, 1985), J.S.R. Chisholm and A. K. Common, eds., Reidel, Dordrecht.

    Google Scholar 

  • Keller, J. (1988). The Theory of Rings Generated by Outer Products, Lecture Notes, UNAM, Mexico.

    Google Scholar 

  • Keller, J., and Rodriguez, S. (1984). Presented at theMexican School of Particles and Fields, Oaxtepec, México. Also in Rodriguez, S. (1984). M.Sc. Thesis, UNAM. México.

    Google Scholar 

  • Keller, J., and Rodríguez-Romo, S. (1990).Journal of Mathematical Physics,31, 2501.

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M. (1965).Relativistic Quantum Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Lindley, D., Kolb, E. W., and Schramm, D. N. (1988).American Journal of Physics,56, 492–501.

    Google Scholar 

  • Lounesto, P. (1980).Annales de l'Institut Henri Poincaré, A,33, 53–61.

    Google Scholar 

  • Marlow, A. R. (1984).International Journal of Theoretical Physics,23, 863.

    Google Scholar 

  • Marlow, A. R. (1986).International Journal of Theoretical Physics,25, 561.

    Google Scholar 

  • Moser, H. E. (1958).Nuovo Cimento,8(Suppl. 1), 18.

    Google Scholar 

  • Ohmura, T. (1956).Progress of Theoretical Physics,16, 604.

    Google Scholar 

  • Okun, L. B. (1982).Leptons and Quarks. North-Holland, Amsterdam.

    Google Scholar 

  • Oppenheimer, R. (1931).Physical Review,38, 725.

    Google Scholar 

  • Particle Data Group (1986).Physics Letters B,170, 1.

    Google Scholar 

  • Penrose, R. (1971). Combinatorial space-time, inQuantum Theory and Beyond, T. Bastin, ed., Cambridge University Press, New York, pp. 151–180.

    Google Scholar 

  • Salam, A. (1968). InProceedings 8th Nobel Symposium, N. Svartholm, ed., Almquist and Wiksell, Stockholm, p. 367.

    Google Scholar 

  • Smith, F. (1985).International Journal of Theoretical Physics,24, 155.

    Google Scholar 

  • Weinberg, S. (1967).Physical Review Letters,19, 1264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, J. Spinors and multivectors as a unified tool for spacetime geometry and for elementary particle physics. Int J Theor Phys 30, 137–184 (1991). https://doi.org/10.1007/BF00670710

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670710

Keywords

Navigation