Pflügers Archiv

, Volume 400, Issue 1, pp 28–33 | Cite as

Modulation of low calcium induced field bursts in the hippocampus by monoamines and cholinomimetics

  • H. L. Haas
  • J. G. R. Jefferys
  • N. T. Slater
  • D. O. Carpenter
Excitable Tissues And Central Nervous Physiology


The influence of monoamine transmitter candidates, acetylcholine and related substances on rhythmic depolarization shifts (field bursts) in the CA1 area of hippocampal slices from rats in low calcium (0.2 mmol·l−1) high magnesium (4 mmol·l−1) was investigated. Acetylcholine (ACh), histamine (HA) and H2-agonists, noradrenaline (NA) and beta-agonists at nano- to micromolar concentrations as well as dopamine (DA) and 8-bromo-cyclic AMP at 100 μmol·l−1 accelerated the field bursts. H2-antagonists blocked HA actions, beta-antagonists blocked NA actions selectively; muscarinic antagonists blocked ACh, HA and NA actions. H1-agonists, serotonin, dopamine and adenosine slowed the field bursts at micromolar concentrations. These effects parallel the action of the tested substances on afterhyperpolarizations in CA 1 pyramidal cells. High sensitivity and specificity make this response of the field bursts an excellent model to study postsynaptic transmitter actions in the central nervous system.

Key words

Hippocampal slice Low Ca field bursts Monoamines Cyclic AMP Cholinomimetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler M, Albuquerque EX, Lebeda FJ (1978) Kinetic analysis of endplate currents altered by atropine and scopolamine. Mol Pharmacol 14:514–529Google Scholar
  2. Ascher P, Marty A, Nield TO (1978) The mode of action of antagonists of the excitatory response to acetylcholine in Aplysia neurones. J Physiol (Lond) 278:207–235Google Scholar
  3. Benardo LS, Prince DA (1982a) Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 297:76–79Google Scholar
  4. Benardo LS, Prince DA (1982a) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res 249:315–331Google Scholar
  5. Ben-Ari Y, Krnjevic K, Reinhardt W, Ropert N (1981b) Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus. Neuroscience 6:2475–2484Google Scholar
  6. Black JW, Duncan WAM, Durant CJ, Ganellin CR, Parsons EM (1972) Definition and antagonism of histamine H2-receptors. Nature 236:385–390Google Scholar
  7. Carafoli E, Rossi CS (1971) Calcium transport in mitochondria. In: Clementi F, Cecarelli B, (eds) Advances in cytopharmacology, vol 1. Raven Press, New York, pp 209–227Google Scholar
  8. Carpenter DO, Gaubatz GL (1975) H1 and H2 histamine receptors on Aplysia neurones. Nature 254:343–344Google Scholar
  9. Creese J, Prosser T, Snyder SH (1978) Receptor binding specificity, localisation and regulation by ions and guanyl nucleotides. Life Sciences 23:495–500Google Scholar
  10. Dam Trung Tuong M, Garbarg M, Schwartz JC (1980) Pharmacological specificity of brain histamine H2-receptors differs in intact cells and cell free preparations. Nature 287:548–551Google Scholar
  11. Dodd J, Dingledine R, Kelly JS (1981) The excitatory action of acetylcholine on hippocampal neurones of the guinea-pig and rat maintained in vitro. Brain Res 207:109–127Google Scholar
  12. Etgen AM, Browning ET (1983) Activators of cyclic AMP accumulation in rat hippocampal slices: action of vasoactive intestinal peptide (VIP). J Neurosci (in press)Google Scholar
  13. Gähwiler BH, Dreifuss JJ (1982) Multiple actions of acetylcholine on hippocampal pyramidal cells in organotypic explant cultures. Neuroscience 7:1243–1256Google Scholar
  14. Geller HM (1981) Histamine actions on activity of cultured hypothalamic neurons: evidence for mediation by H1- and H2-histamine receptors. Develop Brain Res 1:89–101Google Scholar
  15. Godfraind JM, Krnjevic K, Maretic H, Pumain R (1973) Inhibition of cortical neurones by imidazole and some derivatives. Can J Physiol Pharmacol 51:790–791Google Scholar
  16. Green JP (1970) Histamine. In: Lajtha A (ed) Handbook of neurochemistry, vol 4. Plenum Press, New York, pp 221–250Google Scholar
  17. Green JP (1982) Histamine receptors in brain. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 17. Plenum Press, New York, pp 385–420Google Scholar
  18. Haas HL (1981) Histamine hyperpolarizes hippocampal neurones in vitro. Neurosc Lett 22:75–78Google Scholar
  19. Haas HL (1982) Cholinergic disinhibition in hippocampal slices of the rat. Brain Res 233:200–204Google Scholar
  20. Haas HL, Bucher UM (1975) Histamine H2-receptors on single central neurones. Nature 255:634–635Google Scholar
  21. Haas HL, Wolf P (1977) Central actions of histamine, microelectrophoretic studies. Brain Res 122:269–279Google Scholar
  22. Haas HL, Konnerth A (1983) Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302:432–434Google Scholar
  23. Haas HL, Anderson EG, Hoesli L (1973) Histamine and metabolites: their interactions with convulsants on brain stem neurones. Brain Res 51:399–402Google Scholar
  24. Haas HL, Wolf P, Palacios JM, Garbarg M, Barbin G, Schwartz JC (1978) Hypersensitivity to histamine in the guinea-pig brain: microiontophoretic and biochemical studies. Brain Res 156:275–291Google Scholar
  25. Haas HL, Schaerer B, Vosmansky M (1979) A simple perfusion chamber for the study of nervous tissue slices in vitro. J Neurosci Methods 1:323–325Google Scholar
  26. Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92Google Scholar
  27. Herrling PL (1981) The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction-mechanisms to iontophoretically applied transmitter agonists. Brain Res 212:331–343Google Scholar
  28. Jahnsen H (1980) The action of 5-hydroxytryptamine on neuronal membranes and synaptic transmission in area CA 1 of the hippocampus in vitro. Brain Res 197:83–94Google Scholar
  29. Jefferys JGR, Haas HL (1982) Synchronized bursting of CA 1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300:448–450Google Scholar
  30. Langmoen IA, Segal M, Andersen P (1981) Mechanisms of norepinephrine actions on hippocampal pyramidal cells in vitro. Brain Res 208:349–362Google Scholar
  31. Madison DV, Nicoll RA (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636–638Google Scholar
  32. Mueller AL, Hoffer BJ, Dunwiddie TV (1981) Noradrenergic responses in rat hippocampus: evidence for mediation by alpha and beta receptors in the in vitro slice. Brain Res 214:113–125Google Scholar
  33. Mueller AL, Palmer MR, Hoffer BJ, Dunwiddie TV (1982) Hippocampal noradrenergic responses in vivo and in vitro, characterization of alpha and beta components. Naunyn-Schmiedeberg's Arch 318:259–266Google Scholar
  34. Schofield GG, Warnick JE, Albuquerque EX (1981) Elucidation of the mechanism and site of action of quinuclidinyl benzilate (QNB) on the electrical excitability and chemosensitivity of the frog sartorius muscle. Cell Mol Neurobiol 1:209–230Google Scholar
  35. Schwartz JC (1979) Histamine receptors in brain. Life Sciences 25:895–912Google Scholar
  36. Segal M (1980a) The action of serotonin in the rat hippocampal slice preparation. J Physiol (Lond) 303:423–439Google Scholar
  37. Segal M (1980b) Histamine produces a Ca-sensitive depolarization of hippocampal pyramidal cells in vitro. Neuroscience Lett 19:67–71Google Scholar
  38. Segal M (1981a) Histamine modulates reactivity of hippocampal CA 3 neurons to afferent stimulation in vitro. Brain Res 213:443–448Google Scholar
  39. Segal M (1981b) The action of norepinephrine in the rat hippocampus: intracellular studies in the slice preparation. Brain Res 206:107–128Google Scholar
  40. Segal M (1982) Multiple actions of acetylcholine at a muscarinic receptor studied in the rat hippocampal slice. Brain Res 246:77–87Google Scholar
  41. Slater NT, Carpenter DO (1982) Blockade of acetylcholine-induced inward currents in Aplysia neurons by strychnine and desipramine: effect of membrane potential. Cell Mol Neurobiol 2:53–58Google Scholar
  42. Storm-Mathisen J (1977) Localization of transmitter candidates in the brain: the hippocampal formation as a model. Progr Neurobiol 8:119–181Google Scholar
  43. Taylor CP, Dudek FE (1982) Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218:810–812Google Scholar
  44. Yaari Y, Konnerth A, Heinemann U (1983) Spreading epileptiform activity of CA 1 hippocampal neurons in low extracellular calcium solutions. Expl Brain Res 51:153–156Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H. L. Haas
    • 1
  • J. G. R. Jefferys
    • 2
  • N. T. Slater
    • 3
  • D. O. Carpenter
    • 3
  1. 1.Neurochirurgische UniversitätsklinikZürichSwitzerland
  2. 2.Institut of NeurologyLondonUK
  3. 3.Division of Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations