International Journal of Theoretical Physics

, Volume 33, Issue 3, pp 575–592 | Cite as

Spin-gauge theory of gravity with Higgs-field mechanism

  • H. Dehnen
  • E. Hitzer


We propose a Lorentz-covariant Yang-Mills spin-gauge theory, where the function-valued Dirac matrices play the role of a nonscalar Higgs-field. As symmetry group we chooseSU(2) xU(1). After symmetry breaking a nonscalar Lorentz-covariant Higgs-field gravity appears, which can be interpreted within a classical limit as Einstein's metrical theory of gravity, where we restrict ourselves in a first step to its linearized version.


Field Theory Elementary Particle Quantum Field Theory Symmetry Group Classical Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bade, W., and Jehle, H. (1953).Review of Modern Physics,25, 714.Google Scholar
  2. Babu Joseph, K., and Sabir, M. (1988).Modern Physics Letters A,3, 497.Google Scholar
  3. Barut, A. O., and McEwan, J. (1984).Physics Letters,135, 172.Google Scholar
  4. Barut, A. O., and McEwan, J. (1986).Letters on Mathematical Physics,11, 67.Google Scholar
  5. Chisholm, J., and Farwell, R. (1989).Journal of Physics A,22, 1059, and references cited therein.Google Scholar
  6. Collela, R., Overhauser, A., and Werner, S. (1975).Physical Review Letters,34, 1472.Google Scholar
  7. Dehnen, H., and Ghaboussi, F. (1985).Nuclear Physics B,262, 144.Google Scholar
  8. Dehnen, H., and Ghaboussi, F. (1986).Physical Review D,33, 2205.Google Scholar
  9. Dehnen, H., and Frommert, H. (1991).International Journal of Theoretical Physics,30, 985.Google Scholar
  10. Dehnen, H., Frommert, H., and Ghaboussi, F. (1990).International Journal of Theoretical Physics,29, 537.Google Scholar
  11. Drechsler, W. (1988).Zeitschrift für Physik C,41, 197.Google Scholar
  12. Ghaboussi, F., Dehnen, H., and Israelit, M. (1987).Physical Review D,35, 1189.Google Scholar
  13. Hehl, F. (1973).General Relativity and Gravitation,4, 333.Google Scholar
  14. Hehl, F. (1974).General Relativity and Gravitation,5, 491.Google Scholar
  15. Laporte, O., and Uhlenbeck, B. (1931).Physical Review,37, 1380.Google Scholar
  16. Papapetrou, A. (1956).Annalen der Physik,17, 214.Google Scholar
  17. Schouten, J. (1954).Ricci-Calculus, 2nd ed., Springer, Berlin.Google Scholar
  18. Stumpf, H. (1988).Zeitschrift für Naturforschung,43a, 345.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • H. Dehnen
    • 1
  • E. Hitzer
    • 1
  1. 1.Physics DepartmentUniversity of KonstanzKonstanzGermany

Personalised recommendations