A new theory of elementary matter Part IV: Two-particle systems: The particle-antiparticle pair and hydrogen

  • Mendel Sachs
Article

Abstract

The general theory developed thus far (Sachs, 1971b, c, d) is applied to two-particle systems. An exact bound state solution of the nonlinear field equations of this theory for a particle-antiparticle pair is demonstrated. From the Lagrangian formalism, this solution is shown to predict all of the experimental facts that are conventionally interpreted in terms of ‘pair annihilation’: (1) the energy-momentum four-vector (and each of the four components, separately) are zero, compared with the energy, 2mc2, of the state when the particle and antiparticle are (asymptotically) free and (2) the dynamical properties of this state of positronium make it appear in experimentation as two distinguishable currents, correlated with a 90° phase difference and polarised in a plane that is perpendicular to the direction of propagation of interaction with other charged matter. The latter features are conventionally interpreted as the two photons which are produced in the annihilation event — however, there are no photons in this theory. The spectral distribution of blackbody radiation is then derived from the properties of an ideal gas of such pairs, in their ground states of null energy-momentum, as observed in a finite cavity.

The properties of theclosed electron-proton system are considered and the entire hydrogen spectrum is derived — including the Lamb splitting. The correct lifetimes of the excited hydrogenic states are then derived by considering the radiating hydrogen gas to be immersed in the ideal gas of pairs, that explained blackbody radiation.

Keywords

Blackbody Radiation Elementary Matter Charged Matter Hydrogenic State Bound State Solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bethe, H. A. and Salpeter, E. E. (1957).Quantum Mechanics of One- and Two-Electron Atoms. Academic Press.Google Scholar
  2. Bogoliubov, N. N. and Shirkov, D. V. (1959).Introduction to the Theory of Quantized Fields. Interscience Publishers.Google Scholar
  3. Davies, P. C. W. (1970).Proceedings of the Cambridge Philosophical Society,68, 751.Google Scholar
  4. Dirac, P. A. M. (1947).Quantum Mechanics, 3rd ed., Ch. XI. Oxford University Press.Google Scholar
  5. Einstein, A. and Mayer, W. (1932).Sitzungsberichte der Akademie der Wissenschaften in Wien,8, 522.Google Scholar
  6. Eisenhart, L. P. (1933).Continuous Groups of Transformations. Princeton University Press.Google Scholar
  7. Halberstam, H. and Ingram, R. E. (1967).The Mathematical Papers of Sir William Rowan Hamilton, Volume III: Algebra. Cambridge University Press.Google Scholar
  8. Heitler, W. (1944).The Quantum Theory of Radiation, 2nd ed., Sec. 16. Oxford University Press.Google Scholar
  9. Hylleraas, E. A. (1929).Zeitschrift für Physik,54, 347.Google Scholar
  10. Lamb, W. E., Jr., and Sanders, T. M., Jr. (1956).Physical Review,103, 313.Google Scholar
  11. Lanczos, C. (1966).The Variational Principles of Mechanics, 3rd ed., Appendix II. University of Toronto Press.Google Scholar
  12. Laporte, O. and Uhlenbeck, G. E. (1931).Physical Review,37, 1380.Google Scholar
  13. Layzer, A. J. (1961).Journal of Mathematics and Physics,2, 308.Google Scholar
  14. Lewis, G. N. (1926).Proceedings of the National Academy of Sciences of the United States of America,12, 22, 439.Google Scholar
  15. Pekeris, C. L. (1958).Physical Review,112, 1649.Google Scholar
  16. Pekeris, C. L. (1959).Physical Review,115, 1216.Google Scholar
  17. Petermann, A. (1958).Fortschritte der Physik,6, 505.Google Scholar
  18. Sachs, M. and Schwebel, S. L. (1961).Nuovo cimento (Suppl.),21, 197.Google Scholar
  19. Sachs, M. and Schwebel, S. L. (1962).Journal of Mathematics and Physics,3, 843.Google Scholar
  20. Sachs, M. (1963).Nuovo cimento,27, 1138.Google Scholar
  21. Sachs, M. (1964a).Nuovo cimento,31, 98.Google Scholar
  22. Sachs, M. (1964b).British Journal for the Philosophy of Science,15, 213.Google Scholar
  23. Sachs, M. (1965).Nuovo cimento,37, 977.Google Scholar
  24. Sachs, M. (1967a).Synthese,17, 29.Google Scholar
  25. Sachs, M. (1967b).Nuovo cimento,47, 759.Google Scholar
  26. Sachs, M. (1968a).Nuovo cimento,53B, 398.Google Scholar
  27. Sachs, M. (1968b).Nuovo cimento,55B, 199.Google Scholar
  28. Sachs, M. (1968c).International Journal of Theoretical Physics, Vol. 1, No. 4, p. 387.Google Scholar
  29. Sachs, M. (1969a).Physics Today,22, 51.Google Scholar
  30. Sachs, M. (1969b).Lettere al Nuovo cimento,1, 741.Google Scholar
  31. Sachs, M. (1970a).Philosophy and Phenomenological Research,30, 403.Google Scholar
  32. Sachs, M. (1970b).Nature, London,226, 138.Google Scholar
  33. Sachs, M. (1970c).Nuovo cimento,66B, 137.Google Scholar
  34. Sachs, M. (1970d).British Journal for the Philosophy of Science,21, 359.Google Scholar
  35. Sachs, M. (1971a).International Journal of Theoretical Physics, Vol. 4, p. 145.Google Scholar
  36. Sachs, M. (1971b, c, d, e).International Journal of Theoretical Physics (Parts I, II, III and IV of this series).Google Scholar
  37. Schiff, L. I. (1949)Quantum Mechanics. McGraw-Hill Book Co.Google Scholar
  38. Schilpp, P. A. (1949).Albert Einstein: Philosopher-Scientist. Lib. Liv. Phil.Google Scholar
  39. Tetrode, H. (1922).Zeitschrift für Physik,10, 317.Google Scholar
  40. Triebwasser, S., Dayhoff, E. S. and Lamb, W. E., Jr. (1953).Physical Review,89, 98.Google Scholar
  41. Watson, G. N. (1945).Theory of Bessel Functions. Macmillan, New York.Google Scholar
  42. Wheeler, J. A. and Feynman, R. P. (1945).Review of Modern Physics,17, 157.Google Scholar
  43. Wu, C. S. and Shaknov, I. (1950).Physical Review,77, 136.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • Mendel Sachs
    • 1
  1. 1.Department of PhysicsState University of New YorkBuffalo

Personalised recommendations