Skip to main content
Log in

Effect of alloying elements and structure on the resistance of structural steels to hydrogen embrittlement

  • Published:
Metal Science and Heat Treatment Aims and scope

Conclusions

The data presented indicate that steels intended for operation in media containing hydrogen sulfide should be alloyed with chromium, molybdenum, vanadium, niobium, aluminum, and copper.

The resistance to HE and HSC is highest for low-alloy steels with a fine-grained ferritic-pearlitic structure and alloy steels with a structure of temper sorbite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. V. I. Pasternak, Control of Hydrogen Sulfide Corrosion in Pipelines and Wells Abroad [in Russian], VNIIOÉNG, Moscow (1973), p. 53.

    Google Scholar 

  2. I. S. Shparber, Sulfide Cracking of Steel and Control in the Oil and Gas Refining Industry [in Russian], VNIIOÉNG, Moscow (1970).

    Google Scholar 

  3. C. Zapffe and S. Sims, Trans. AIME,149, 225 (1941).

    Google Scholar 

  4. H. Van Leuwen, Mem. Sci. Rev. Met.,71, No. 9, 509 (1974).

    Google Scholar 

  5. Ya. M. Potak, Brittle Fracture of Steel and Steel Parts [in Russian], Oborongiz, Moscow (1955), p. 389.

    Google Scholar 

  6. P. A. Rebinder et al., Indicators of Hardness in Drilling [in Russian], Izd. Akad. Nauk SSSR, Moscow (1954).

    Google Scholar 

  7. N. Petch, Phil. Mag.,1, No. 8, 331 (1956).

    Google Scholar 

  8. A. Troiano, TASM,52, 54 (1960).

    Google Scholar 

  9. P. Bastien and P. Amio, Fourth International Petroleum Congress [in Russian], Gostoptekhizdat, Moscow (1956), p. 124.

    Google Scholar 

  10. M. Smialowski, Hydrogen in Steel, Pergamon Press, London (1962).

    Google Scholar 

  11. E. Herzog, Rev. Met., No. 2, 123 (1958).

    Google Scholar 

  12. K. Farell and A. Quarell, J. Iron Steel Inst.,202, 1002 (1964).

    Google Scholar 

  13. J. Greer, E. Von Rosenberg, and J. Martinez, Corrosion,28, No. 10, 378 (1972).

    Google Scholar 

  14. P. Bastien, Arts et Manufactures,12, No. 5, 15 (1967).

    Google Scholar 

  15. W. Chandler and R. Wader, Hydrogen-environment embrittlement of metals and control. Hydrogen Energy, Part B. New York-London (1975), p. 1057.

  16. G. M. Karpenko and R. I. Kripyakevich Effect of Hydrogen on Properties of Steel [in Russian], Metallurgizdat, Moscow (1962), p. 195.

    Google Scholar 

  17. V. Dal' et al., “Failure of steels under the influence of humid hydrogen sulfide”, Chernye Metally, No. 3, 3 (1967).

    Google Scholar 

  18. E. Miyoshe et al., ASME, No. 75, 2 (1975).

    Google Scholar 

  19. É. Lunarska, “Effect of plastic deformation on absorption of hydrogen by iron and steel”, in: Stress Corrosion and Hydrogen Embrittlement [in Russian], Dresden (1975), p. 48.

  20. G. Shenk, E. Shmidtman, and G. F. Klerner, “Resistance of pipe steel with a minimum yield strength of 30 kgf/mm2 in solutions and gases containing hydrogen sulfide”, Chernye Metally, No. 3, 16 (1967).

    Google Scholar 

  21. K. Masamiti et al., “New steel for oil pipe with high resistance to corrosion cracking in sulfide environments”, Sumitomo Kindzoku,24, No. 3, 38 (1972).

    Google Scholar 

  22. E. Snape, Corrosion, NACE,23, No. 6, 154(1967).

    Google Scholar 

  23. D. R. Ramazashvili et al., “Pipe steels for gas wells in hydrogen sulfide fields,” in: Trans. Inst. Met. of the Academy of Sciences, Georgian SSR, Materials for New Technology [in Russian], Tbilisi (1971).

  24. K. I. Vereshchagin, Yu. I. Rubenchik, and G. V. Karpenko, “Effect of alloying and microalloying on resistance of steels to cracking”, Fiz.-Khim. Mekh. Mater., No. 5, 15 (1971).

    Google Scholar 

  25. G. V. Karpenko et al., “Steels for pump-compressor pipe” Khim. Neftyanoe Mashinostr., No. 1, 23 (1973).

    Google Scholar 

  26. A. M. Zubko et al., “Effect of phosphorus and sulfur on hydrogenation of high-strength steel and its susceptibility to stress corrosion” Metalloved. Term. Obrab. Met., No. 12, 52 (1973).

    Google Scholar 

  27. E. Snape, Corrosion, NACE,24, No. 9, 261 (1968).

    Google Scholar 

  28. A. B. Kuslitskii, Nonmetallic Inclusions in Steel, [in Russian], Tekhnika, Kiev (1976),p. 124.

    Google Scholar 

  29. O. Kiku, J. Iron Steel Inst. Jpn.,61, No. 12, 774 (1975).

    Google Scholar 

  30. I. N. Grekov et al., “Means of increasing the resistance of steels in petrochemical apparatus”, Fiz.-Khim. Mekh. Mater.,5, 324 (1969).

    Google Scholar 

  31. V. P. Krylov, and I. I. Vorob'eva, “Hydrogen embrittlement of steel with nonmetallic inclusions”, Metalloved. Term. Obrab. Met., No. 5, 40 (1973).

    Google Scholar 

  32. G. M. Itskovich, “Formation of nonmetallic inclusions in steel deoxidized with aluminum and with calcium-containing alloys”, in: Steel and Nonmetallic Inclusions [in Russian], No. 1 Metallurgizdat, Moscow (1976), p. 134.

    Google Scholar 

  33. M. Tanimura et al., Tetsu-to-Hagane,62, No. 4, 347 (1976).

    Google Scholar 

  34. S. A. Golovanenko, I. Yu. Konnova, and T. K. Sergeeva, “Resistance to hydrogen embrittlement of steel 10Kh2GMA with aluminum”, Metalloved. Term. Obrab. Met., No. 8, 30(1976).

    Google Scholar 

  35. P. Grobner, D. Sponseller, and W. Gias, Mater. Perform.,14, No. 6, 35 (1975).

    Google Scholar 

  36. M. A. Krishtal, Mechanism of Diffusion in Iron Alloys [in Russian], Metallurgiya, Moscow (1972), p. 398.

    Google Scholar 

  37. M. Hill, E. Kawasaki, and H. Kronbach, “Metallurgical microstructure of casing pipe—evidence of susceptibility to rapid failure in a hydrogen sulfide environment,” in: Corrosion, Report No. 10, Houston (1971).

  38. V. A. Kovalenko, “Effect of the structure of steel on hydrogen permeability”, Fiz.-Khim. Mekh. Mater.,9, No. 3, 115 (1973).

    Google Scholar 

  39. D. Stratmann and P. Grobner, Steels and Alloys with High Strength and Resistance in an Atmosphere of H2S for Pipe Used to Extract Oil [Russian translation], VTsP, Moscow, SR-772 (1976).

    Google Scholar 

  40. H. Russev, Rev. Met., No. 4, 371 (1967).

    Google Scholar 

  41. S. Asano et al., “Effect of pinning of hydrogen by dislocations on its diffusion in low-carbon steel”, Nikon Kindzoku Gakkaisi,38, No. 7, 626(1974).

    Google Scholar 

  42. E. Snape, F. Schaller, and R. Forbes-Jones, Corrosion,25, No. 9, 380 (1969).

    Google Scholar 

  43. M. Chaichois and M. Pailassa, Corros. Anticorros.13 No. 1, 37 (1965).

    Google Scholar 

  44. API Specification for Grade C-75-C-95 Casing and Tubing. Americal Petroleum Institute Publication, March, 1973.

  45. T. Swanson and J. Fralmer, Materials Protection and Performance,11, No. 1, 36 (1972).

    Google Scholar 

  46. Sumitomo Metal Industries Ltd., Wakayama Steel Works, Technical Information (SM-85SS), April, 1975.

  47. Materials Protection,5, 81. NACE Publication 1F, 166 (1966).

  48. Creselso-38, TT st 36 (Dillinger). Stahl-Eisen-Werkstoffblat (089) (1970).

Download references

Authors

Additional information

I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 2–14, January, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovanenko, S.A., Zikeev, V.N., Serebryanaya, E.B. et al. Effect of alloying elements and structure on the resistance of structural steels to hydrogen embrittlement. Met Sci Heat Treat 20, 3–14 (1978). https://doi.org/10.1007/BF00670433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670433

Keywords

Navigation