Advertisement

International Journal of Theoretical Physics

, Volume 4, Issue 6, pp 403–425 | Cite as

Photons, neutrinos, electrons and baryons in a unified spinor field theory of relativity

  • D. E. Littlewood
Article

Conclusion

A mathematically precise model may be constructed by considering a distribution of basic spinors in a Kaluza 5-space, such that
  1. (1)

    The basic spinors W satisfy curl5 W=0

     
  2. (2)

    The four-dimensional curvature is in accordance with Einstein's General Theory, taking the energy-momentum-tension tensor as TIJ = k1, Qi Qj + k2PiPj + k3gij(PkkPk) where\(Q_i = \widetilde{\bar W}TX_i W,{\text{ }}P_2 = \widetilde{\bar W}T\phi X_i W\), and the ratiosk1:k2:k3 are adjustable to give the best fit.

     
  3. (3)
    The five-dimensional curvature associated with the electromagnetic field is determined by the concomitant
    $$F_{ij} = \widetilde{\bar W}TX_i X_j W$$
    In this model there can exist wave packets which behave in exactly the same way as the physical properties of photons, neutrinos, electrons and baryons.
     

This model is certainly a very close fit to the physical world as we know it.

Keywords

Field Theory Elementary Particle Quantum Field Theory General Theory Electromagnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dirac, P. A. M. (1935).Quantum Mechanics. Oxford University Press.Google Scholar
  2. Kaluza, Th. (1921).Sitzungsberichte der Preussischen Akademie de Wissenschaften zu Berlin, p. 966.Google Scholar
  3. Littlewood, D. E. (1950).The Theory of Group Characters and Matrix Representations of Groups, 2nd edition. Oxford University Press.Google Scholar
  4. Littlewood, D. E. (1958).A University Algebra, 2nd edition. Heinemann, p. 306.Google Scholar
  5. Littlewood, D. E. (1969). Relativity and quantum theory. A unified model.Annali di matematica pura ed applicata, 111.Google Scholar
  6. Moret-Bailly, F. (1966).Annales de l'Institut Henri Poincaré V, 301.Google Scholar
  7. Mössbauer, R. L. (1958).Zeitschrift für Physik,151, 124.Google Scholar
  8. Mössbauer, R. L. (1958).Naturwissenschaften,45, 538.Google Scholar
  9. Mössbauer, R. L. (1959).Zeitschrift für Naturforschung,14a, 211.Google Scholar
  10. Pauli, W. (1958).Theory of Relativity. Pergamon Press, p. 227.Google Scholar
  11. Weyl, H. (1929).Zeitschrift für Physik,56, 330.Google Scholar
  12. Wheeler, J. A. (1955).Physical Review,97, 511.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1971

Authors and Affiliations

  • D. E. Littlewood
    • 1
  1. 1.University College of North WalesBangor

Personalised recommendations