Space-time edge geometry

  • C. T. J. Dodson
Article

Keywords

Field Theory Elementary Particle Quantum Field Theory Edge Geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beem, J. K. (1976). “Conformal changes and geodesic completeness,”Commun. Math. Phys.,49, 179–186.Google Scholar
  2. 2.
    Beem, J. K. (1976). “Globally hyperbolic space-times which are timelike Cauchy complete,”Gen. Rel. Grav.,7, 339–344.Google Scholar
  3. 3.
    Beem, J. K. (1976). “Some examples of incomplete space-times,”Gen. Rel. Grav.,7, 501–509.Google Scholar
  4. 4.
    Bishop, R. L., and Crittenden, R. J. (1964).Geometry of Manifolds (Academic Press, New York).Google Scholar
  5. 5.
    Bishop, R. L., and Goldberg, S. I. (1968).Tensor Analysis on Manifolds (MacMillan, New York).Google Scholar
  6. 6.
    Borzeszkowski, H. H. V., and Kasper, U. (1975). “Boundaries of space-times and singularities in general relativity,”Ann. Phys. Leipzig,32, 146–158.Google Scholar
  7. 7.
    Bosshard, B. (1976). “On theb-boundary of the closed Friedmann model,”Commun. Math. Phys.,46, 263–268.Google Scholar
  8. 8.
    Brickell, F., and Clark, R. S. (1970).Differentiable Manifolds (Van Nostrand, London).Google Scholar
  9. 9.
    Campbell, S. J., and Wainwright, J. (1977). “Algebraic computing and the Newman-Penrose formalism in general relativity,” Preprint (Dept. Applied Math., University of Waterloo, Ontario, Canada).Google Scholar
  10. 10.
    Clarke, C. J. S. (1975). “Singularities in globally hyperbolic space-times,”Commun. Math. Phys.,41, 65–78.Google Scholar
  11. 11.
    Clarke, C. J. S. (1976). “Space-time singularities,”Commun. Math. Phys.,49, 17–23.Google Scholar
  12. 12.
    Clarke, C. J. S. (1976). “On the differentiability of space-time,” Preprint MPI-PAE/Astro 80 (Max Planck Institute for Physics and Astrophysics, Munich).Google Scholar
  13. 13.
    Clarke, C. J. S., and Schmidt, B. G. (1977). “Singularities: The state of the art,”Gen. Rel. Grav.,8, 129–137.Google Scholar
  14. 14.
    Dieudonné, J. (1960).Foundations of Modern Analysis (Academic Press, New York).Google Scholar
  15. 15.
    Dodson, C. T. J. “A new bundle-completion for parallelizable spacetimes,” Internal Report IC/77/60 (ICTP, Trieste); presented at GR8 Symposium, Waterloo, Ontario, Canada, August 1977.Google Scholar
  16. 16.
    Dodson, C. T. J., and Poston, T. (1977).Tensor Geometry (Pitman, London).Google Scholar
  17. 17.
    Dodson, C. T. J., and Sulley, L. J. (1977). “Theb-boundary ofS 1 with a constant connection,”Lett. Math. Phys.,1, 301–307.Google Scholar
  18. 18.
    Duncan, D. P., and Shepley, L. C. (1974). “A numerical sufficient condition for deciding if a space-time is inextensible,”Nuovo Cimenta,24B, 130–134.Google Scholar
  19. 19.
    Duncan, D. P., and Shepley, L. C. (1975). “Boundaries of spacetimes,”J. Math. Phys.,16, 485–492.Google Scholar
  20. 20.
    Eardley, D., and Sachs, R. K. (1973). “Space-times with a future projective infinity,”J. Math. Phys.,14, 209–212.Google Scholar
  21. 21.
    Eells, J. (1974). “Fibre bundles,” inGlobal Analysis and Its Applications, vol. I (IAEA, Vienna), pp. 53–82.Google Scholar
  22. 22.
    Ehresmann, C. (1951). “Les connexions infinitésimales dans un espace fibre différentiable,” Colloque de Topologie, Bruxelles, 5–8 June 1950, CBRM (Georges Thone, Liege), pp. 29–55.Google Scholar
  23. 23.
    Ellis, G. F. R., and King, A. R. (1974). “Was the big-bang a whimper?”Commun, Math. Phys.,38, 119–156.Google Scholar
  24. 24.
    Ellis, G. F. R., and Schmidt, B. G. (1976). “Singular space-times”, Preprint MPI-PAE/Astro 104 (Max Planck Institute for Physics and Astrophysics, Munich).Google Scholar
  25. 25.
    Friedrich, H. (1974). “Construction and properties of space-timeb-boundaries,”Gen. Rel. Grav.,5, 681–697.Google Scholar
  26. 26.
    Geroch, R. P. (1967). “Topology in general relativity,”J. Math. Phys.,8, 782–786.Google Scholar
  27. 27.
    Geroch, R. P. (1968). “Spinor structures of spacetimes in general relativity. I,”J. Math. Phys.,9, 1739–1744.Google Scholar
  28. 28.
    Geroch, R. “Local characterization of singularities in general relativity,”J. Math. Phys.,9, 450–465.Google Scholar
  29. 29.
    Geroch, R. P. (1968). “What is a singularity?”Ann. Phys.,48, 526–540.Google Scholar
  30. 30.
    Geroch, R., Kronheimer, E. H., and Penrose, R. (1972). “Ideal points in spacetime,”Proc. R. Soc. Lond. A.,327, 545–567.Google Scholar
  31. 31.
    GR8Abstracts of Contributed Papers, Eighth International Conference on General Relativity and Gravitation, August 7–12, 1977, Department of Applied Mathematics, University of Waterloo, Ontario, Canada.Google Scholar
  32. 32.
    Hájiček, P., and Schmidt, B. G. (1971). “Theb-boundary of tensor bundles over a space-time,”Commun. Math. Phys.,23, 285–295.Google Scholar
  33. 33.
    Hawking, S. W. (1966). “Singularities and the geometry of space-time,” Adams Prize Essay, Cambridge (unpublished).Google Scholar
  34. 34.
    Hawking, S. W. (1971). InProceedings of Liverpool Singularities Symposium II, Lecture Notes in Mathematics 209 (Springer, Berlin), pp. 275–279.Google Scholar
  35. 35.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large-Scale Structure of Spacetime (Cambridge University Press, Cambridge).Google Scholar
  36. 36.
    Hurewicz, W., and Wallman, H. (1948).Dimension theory (Princeton University Press, Princeton).Google Scholar
  37. 37.
    Ihrig, E. (1976). “The holonomy group in general relativity and the determination ofg if fromT ji”,Gen. Rel. Grav.,7, 313–323.Google Scholar
  38. 38.
    Johnson, R. A. (1977). “The bundle boundary in some special cases,”J. Math. Phys.,18, 898–902.Google Scholar
  39. 39.
    Kelley, J. L. (1965).General Topology (van Nostrand, Princeton).Google Scholar
  40. 40.
    King, A. R., and Ellis, G. F. R. (1973). “Tilted homogeneous cosmological models,”Commun. Math. Phys.,31, 209–242.Google Scholar
  41. 41.
    Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, vol. 1 (Interscience, New York).Google Scholar
  42. 42.
    Kowalsky, H-J. (1965).Topological spaces (Academic Press, New York).Google Scholar
  43. 43.
    Kronheimer, E. H., and Penrose, R. (1967). “On the structure of causal spaces,”Proc. Camb. Phil. Soc.,63, 481–501.Google Scholar
  44. 44.
    Lee, C. W. (1977). “A restriction on the topology of Cauchy surfaces in general relativity,”Commun. Math. Phys.,51, 157–162.Google Scholar
  45. 45.
    Lee, C. W. (1977). “Implicit restrictions on the topology of space-time,” Ph.D. thesis, Dept. Mathematics, University of Lancaster [see also Proc. Roy. Soc. 1978].Google Scholar
  46. 46.
    Lee, K. K. (1973). “Global spinor fields in space-time,”Gen. Rel. Grav.,4, 421–433.Google Scholar
  47. 47.
    Lee, K. K. (1975). “On the fundamental groups of space-times in general relativity,”Gen. Rel. Grav.,6, 239–242.Google Scholar
  48. 48.
    Marathe, K. B. (1972). “A condition for paracompactness of a manifold,”J. Diff. Geom.,7, 571–573.Google Scholar
  49. 49.
    Parker, P. E. (1977). “The Schwarzschild particle,” Preprint (Dept. Mathematics, State University of New York at Buffalo).Google Scholar
  50. 50.
    Penrose, R. (1969). “Structure of space-time,” inBattelle Rencontres, ed. C. M. De Witt and J. A. Wheeler (Benjamin, New York), pp. 121–235.Google Scholar
  51. 51.
    Pontryagin, L. S. (1966).Topological Groups, 2nd ed. (Gordon and Breach, New York).Google Scholar
  52. 52.
    Sachs, R. K. (1973). “Spacetimeb-boundaries,”Commun. Math. Phys.,33, 215–220.Google Scholar
  53. 53.
    Sachs, R. K., and Wu, H. (1976).General Relativity for Mathematicians (Springer-Verlag, New York and Berlin).Google Scholar
  54. 54.
    Schmidt, B. G. (1968). “Riemannsche Räume mit mehrfach transitiver Isometrie-gruppe,” Doktorarbeit, University of Hamburg.Google Scholar
  55. 55.
    Schmidt, B. G. (1971). “A new definition of singular points in general relativity,”Gen. Rel. Grav.,1, 269–280.Google Scholar
  56. 56.
    Schmidt, B. G. (1973). “Local completeness of theb-boundary,”Commun. Math. Phys.,29, 49–54.Google Scholar
  57. 57.
    Schmidt, B. G. (1974). “A new definition of conformal and projective infinity of spacetimes,”Commun. Math. Phys.,36, 73–90.Google Scholar
  58. 58.
    Seifert, H-J. (1971). “The causal boundary of space-times,”Gen. Rel. Grav.,1, 247–259.Google Scholar
  59. 59.
    Stredder, P. (1975). “Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal groups,”J. Diff. Geom.,10, 647–660.Google Scholar
  60. 60.
    Steenrod, N. E. (1951).Topology of Fibre Bundles (Princeton University Press, Princeton).Google Scholar
  61. 61.
    Thorpe, J. E. (1969). “Curvature and the Petrov canonical forms,”J. Math. Phys.,10, 1–7.Google Scholar
  62. 62.
    Thorpe, J. E. (1977). “Curvature invariants and space-time singularities,”J. Math. Phys.,18, 960–964.Google Scholar
  63. 63.
    Tipler, F. J. (1977). “On the nature of singularities in general relativity,”Phys. Rev. D.,15, 942–945.Google Scholar
  64. 64.
    Woodhouse, N. M. J. (1974). “The completion of a chronological space,”Proc. Camb. Phil. Soc.,76, 531–544.Google Scholar
  65. 65.
    Woodhouse, N. M. J. (1976). “An application of Morse theory to space-time geometry,”Commun. Math. Phys.,46, 135–152.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • C. T. J. Dodson
    • 1
  1. 1.Department of MathematicsUniversity of LancasterUK

Personalised recommendations