Advertisement

Conformal invariance in Weyl gravity

  • R. P. Zaikov
Article

Abstract

A conformal-invariant model of Weyl gravity, based on a nondecomposable representation of the conformal group, allows one to have a conformal-invariant propagator in an arbitrary gauge, as well as a conformal-invariant gauge-fixing term in the Lagrangian approach. It is shown that in the gauge-invariant sector this theory coincides with ordinary Weyl gravity (with conformal-noninvariant gauge fixing). The corresponding BRST transformations are found and are used for derivation of the Slavnov-Taylor identities.

Keywords

Field Theory Elementary Particle Quantum Field Theory Conformal Invariance Lagrangian Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, S. (1982).Review of Modern Physics,54, 729.Google Scholar
  2. Binegar, B., Fronsdal, C., and Heidenreich, W. (1983).Journal of Mathematical Physics,24, 2828.Google Scholar
  3. Fradkin, E. S., and Tzetlin, A. A. (1982).Nuclear Physics,B201, 469.Google Scholar
  4. Furlan, P., Petkova, V. B., Sotkov, G. M., and Todorov, I. T. (1983). Preprint, International School for Advanced Studies, 52/83/EP, Trieste.Google Scholar
  5. Furlan, P., Petkova, V. B., Sotkov, G. M., and Todorov, I. T. (1985).Rivesta Nuovo Cimento,8, 1.Google Scholar
  6. Furlan, P., Petkova, V. B., and Sotkov, G. M. (1986). Preprint, International School for Advanced Studies, 7/86/EP, Trieste.Google Scholar
  7. Mack, G., and Salam, A. (1969).Annals of Physics,53, 174.Google Scholar
  8. Petkova, V. B., Sotkov, G. M., and Todorov, I. T. (1985).Communications on Mathematical Physics,97, 227.Google Scholar
  9. Sotkov, G. M., and Stoyanov, D. Tz. (1980).Journal of Physics,A13, 2807.Google Scholar
  10. Sotkov, G. M., Stanev, Ya. S., and Todorov, I. T. (1985).Bulgarian Journal of Physics,12, 535.Google Scholar
  11. Stelle, K. (1977).Physical Review,D16, 953.Google Scholar
  12. Zaikov, R. P. (1983a). Preprint, Joint Institute for Nuclear Research, E2-83-28, Dubna.Google Scholar
  13. Zaikov, R. P. (1983b). Preprint, Joint Institute for Nuclear Research, E2-83-44, Dubna.Google Scholar
  14. Zaikov, R. P. (1985).Teoretitcheskaya i Matematitcheskaya Fizika,65, 70.Google Scholar
  15. Zaikov, R. P. (1986a).Teoretitcheskaya i Matematitcheskaya Fizika,67, 76.Google Scholar
  16. Zaikov, R. P. (1986b).Letters of Mathematical Physics,11, 189.Google Scholar
  17. Zaikov, R. P. (1987).Teoretitcheskaya i Matematitcheskaya Fizika, to be published.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • R. P. Zaikov
    • 1
  1. 1.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria

Personalised recommendations