Advertisement

International Journal of Theoretical Physics

, Volume 17, Issue 9, pp 685–707 | Cite as

The significance of a hidden variable proof and the logical interpretation of quantum mechanics

  • Donald Hockney
Article

Abstract

This paper examines the logical interpretation of quantum mechanics. Since this interpretation is based on a proof by Kochen and Specker that purports to demonstrate that hidden variable theories for quantum mechanics are excluded, the proof and its significance for the understanding of hidden variable theories and standard quantum mechanics are discussed.

Keywords

Field Theory Elementary Particle Quantum Field Theory Quantum Mechanic Variable Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belinfante, F. J. (1973).A Survey of Hidden Variable Theories, Pergamon, New York.Google Scholar
  2. Bell, J. S. (1964).Physics,1, 195.Google Scholar
  3. Bell, J. S. (1966).Reviews of Modem Physics,38, 447.Google Scholar
  4. Birkhoff, G., and von Neumann, J. (1936).Annals of Mathematics,37, 823.Google Scholar
  5. Bohm, D. (1952).Physical Review,85, 180.Google Scholar
  6. Bohm, D., and Bub, J. (1966).Reviews of Modern Physics,38, 453.Google Scholar
  7. Bohm, D., and Hiley, B. (1975).Foundations of Physics,5, 93.Google Scholar
  8. Bub, J. (1973a). In Hooker, C. A. (ed.),Contemporary Research in the Foundations and Philosophy of Quantum Mechanics, D. Reidel, Boston, p. 1.Google Scholar
  9. Bub, J. (1973b).British Journal for the Philosophy of Science,24, 78.Google Scholar
  10. Bub, J. (1974).The Interpretation of Quantum Mechanics, D. Reidel, Boston.Google Scholar
  11. Bub, J. (1976). In Harper, W., and Hooker, C. A. (eds.),Foundations of Probability Theory, Statistical Inference and Statistical Theories of Science, Vol. III, D. Reidel, Boston, p. 1.Google Scholar
  12. Bub, J., and Demopoulos, W. (1974). InBoston Studies in the Philosophy of Science, Vol. XIII, D. Reidel, Boston, p. 92.Google Scholar
  13. Demopoulos, W. (1976). In Harper, W., and Hooker, C. A. (eds.),Foundations of Probability Theory, Statistical Inference and Statistical Theories of Science, Vol. III, D. Reidel, Boston, p. 55.Google Scholar
  14. Finkelstein, D. (1962–63).Transactions of the New York Academy of Science,25, 621.Google Scholar
  15. Gleason, A. (1957).Journal of Rational Mechanical Analysis,6, 885.Google Scholar
  16. Jammer, M. (1974).The Philosophy of Quantum Mechanics, Wiley, New York.Google Scholar
  17. Kochen, S., and Specker, E. (1965a). In Addison, J., et al. (eds.),The Theory of Models, North Holland, Amsterdam, p. 177.Google Scholar
  18. Kochen, S., and Specker, E. (1965b). In Bar-Hillel, U. (ed.),Logic, Methodology and the Philosophy of Science, North Holland, Amsterdam, p. 45.Google Scholar
  19. Kochen, S., and Specker, E. (1967).Journal of Mathematics and Mechanics,17, 331.Google Scholar
  20. Neumark, M. (1954). InSowjetsche Arbeiten zur Funktionalen Analyse, Verlag Kultur und Fortschritt, Berlin.Google Scholar
  21. Park, J. L. (1968).American Journal of Physics,36, 221.Google Scholar
  22. Putnam, H. (1969). InBoston Studies in the Philosophy of Science, Vol. V, D. Reidel, Boston, p. 216.Google Scholar
  23. Specker, E. (1960).Dialectica,14, 239.Google Scholar
  24. Strauss, M. (1972).Modern Physics and its Philosophy, D. Reidel, Boston.Google Scholar
  25. von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Donald Hockney
    • 1
  1. 1.Polytechnic Institute of New YorkBrooklyn

Personalised recommendations