International Journal of Theoretical Physics

, Volume 25, Issue 8, pp 779–806 | Cite as

Generalization of the Dirac equation admitting isospin and color symmetries

  • Jaime Keller
Article

Abstract

One possible generalization of the Dirac “square root” procedureμμ=D d k D d is presented, based on the explicit introduction of chiral symmetry, which generates a set {d} of symmetry-constrained Dirac fieldsD d ψ d =0admitting isospin and color. A self-consistent discussion is given of the basic geometrical construction, the field equations, and their relationship to chiral symmetry, isospin, and color, and of the construction of the Lagrangian, including the interaction gauge fields. The correspondence of the theory with the standardSUc(3) ×SUw(2) ×Uy(1) formulation for quarks and leptons is shown.

Keywords

Color Field Theory Elementary Particle Quantum Field Theory Field Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boudet, R. (1971).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris), Serie A,272, 767.Google Scholar
  2. Boudet, R. (1974).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris), Serie A,278, 1063.Google Scholar
  3. Boudet, R. (1985).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris), Serie, II 300, 157.Google Scholar
  4. Casanova, G. (1970).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris), Serie A,270, 1202.Google Scholar
  5. Casanova, G. (1976).L'algebre vectorielle, Presses Universitaires de France, Paris.Google Scholar
  6. Close, F. E. (1979).An Introduction to Quark and Partons, Academic Press, London.Google Scholar
  7. Eddington, A. S. (1936).Relativity Theory of Protons and Electrons, Macmillan, New York, and references therein.Google Scholar
  8. Field, R. D. (1979).Quantum Flavordynamics, Quantum Chromodynamics and Unified Theories (NATO Advanced Study Series, Series B, Physics. Vol. 54), Plenum Press, New York.Google Scholar
  9. Fritzch, H., and Minkowski, P. (1974).Annals of Physics (New York),93, 193.Google Scholar
  10. Georgi, H. (1975). InParticles and Fields, C. E. Carlson, ed., American Institute of Physics, New York.Google Scholar
  11. Georgi, H., and Glashow, S. L. (1974).Physical Review Letters,32, 438.Google Scholar
  12. Greenberg, O. W. (1964).Physical Review Letters,13, 598.Google Scholar
  13. Greenberg, O. W. (1982).American Journal of Physics,50, 1074.Google Scholar
  14. Greider, T. K. (1980).Physical Review Letters,44, 1718.Google Scholar
  15. Halzen, F., and Martin A. D. (1984).Quarks and Leptons, Wiley, New York.Google Scholar
  16. Hestenes, D. (1966).Spacetime Algebra, Gordon and Breach, New York.Google Scholar
  17. Hestenes, D. (1975).Journal of Mathematical Physics,16, 556, and references therein.Google Scholar
  18. Hestenes, D., and Sobczyk, G. (1984).Clifford Algebra to Geometric Calculus, Reidel, Dordrecht.Google Scholar
  19. Huang, K. (1982).Leptons and Partons, Academic Press, London.Google Scholar
  20. Juvet, G. (1930).Commentarii Mathematici Helvetici,2, 225.Google Scholar
  21. Juvet, G. (1932).Bulletin de la Societé Neuchateloise des Sciences Naturelles,57, 127.Google Scholar
  22. Keller, J. (1981).Revista de la Sociedad Quimica de Mexico,25, 28.Google Scholar
  23. Keller, J. (1983a).International Journal of Theoretical Physics,21, 829.Google Scholar
  24. Keller, J. (1982)b). InProceedings of the Mathematics of the Physical Spacetime, Mexico 1982, J. Keller, ed., p. 117, University of Mexico.Google Scholar
  25. Keller, J. (1984).International Journal of Theoretical Physics,23, 818.Google Scholar
  26. Keller, J. (1985). InProceedings of the NATO & SERC Workshop on “Clifford Algebras and their Applications in Mathematical Physics” (Canterbury, 1985), J. S. R. Chisholm and A. K. Common, eds., Reidel, Dordrecht.Google Scholar
  27. Keller, J., Rodriguez, S., and Peña, A. (1986). In preparation.Google Scholar
  28. Marlow, A. R. (1982). InProceedings of the Mathematics of the Physical Spacetime, Mexico 1982, J. Keller, ed., p. 97, University of Mexico.Google Scholar
  29. Marlow, A. R. (1984).International journal of Theoretical Physics,23, 863.Google Scholar
  30. Mercier, A. (1934).Actes de la Societé Helvetique des Sciences Naturelles Zürich,1934, 278.Google Scholar
  31. Mercier, A. (1935). These, Université de Génève;Archives des Sciences Physiques et Naturelles (Suisse),17, 278.Google Scholar
  32. Okun, L. B. (1982).Leptons and Quarks, North-Holland, Amsterdam.Google Scholar
  33. Proca, A. (1930a).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris),190, 1377.Google Scholar
  34. Proca, A. (1930b).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris),191, 26.Google Scholar
  35. Proca, A. (19830).Journal de Physique, VII 1, 236.Google Scholar
  36. Quilichini, P. (1971).Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences (Paris), Serie B,273, 829.Google Scholar
  37. Ravsevskii, P. K. (1957).Transactions of the American Mathematical Society,6, 1.Google Scholar
  38. Riesz, M. (1946). In,Comptes Rendus du Dixieme Congres des Mathematiques des Pays Scandinaves, Vol. 123, Copenhagen.Google Scholar
  39. Riesz, M. (1953). InComptes Rendus du Douzieme Congres des Mathematiques des Pays Scandinaves, Vol. 241, Lund.Google Scholar
  40. Riesz, M. (1958). Lecture Series No. 38, University of Maryland.Google Scholar
  41. Salam, A. (1968). InProceedings 8th Nobel Symposium, N. Svartholm, ed., p. 367,Almquist and Wiksell, Stockholm Google Scholar
  42. Salingaros, N., and Dresden, M. (1979).Physical Review Letters,43.Google Scholar
  43. Sauter, F. (1930).Zeitschrift für Physik,63, 803;64, 295.Google Scholar
  44. Smith, F. (1985).International Journal of Theoretical Physics,24, 155.Google Scholar
  45. Sommerfeld, A. (1939).Atombau and Spektrallinien, Vol. II. p. 217, Braunschweig.Google Scholar
  46. Teitler, S. (1965a).Nuovo Cimenta Supplemento,3, 1.Google Scholar
  47. Teitler, S. (1965b).Nuovo Cimenta Supplemento,3, 15.Google Scholar
  48. Teitler, S. (1965c).Journal of Mathematical Physics,6, 1976.Google Scholar
  49. Teitler, S. (1966a).Journal of Mathematical Physics,7, 1730.Google Scholar
  50. Teitler, S. (1966b).Journal of Mathematical Physics,7, 1739.Google Scholar
  51. Weinberg, S. (1967).Physical Review Letters,19, 1264.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Jaime Keller
    • 1
    • 2
  1. 1.División de Estudios de PosgradoF.Q. Universidad Nacional Autónoma de MexicoMexico, ap 70-528, D.F.México
  2. 2.Quantum Theory of Matter Project, Facultad de Estudios Superiores-CuautitlánUniversidad Nacional Autónoma de MéxicoMexico, ap 70-528, D.F.México

Personalised recommendations