Advertisement

Fuzzy σ algebras of physics

Article

Abstract

Following the idea of Zadeh, the concept of a statistical (or fuzzy)σ algebra is introduced. For two extreme cases of classical and quantum statisticalσ algebras the representation theorems are proved. The basic feature distinguishing these two cases is the possibility of producing nontrivial superpositions of pure quantum states, which is absent in the classical case.

Keywords

Field Theory Elementary Particle Quantum Field Theory Quantum State Extreme Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bugajska, K., and Bugajski, S. (1973).Ann. Inst. Henri Poincaré,19, 333.Google Scholar
  2. Bugajska, K., and Bugajski, S. (1973).Bull. Acad. Polon. Sci., Ser. Math,21, 873.Google Scholar
  3. Gerelle, E. R., Greechie, R. J., and Miller, F. R. (1974). InPhysical Reality and Mathematical Description, pp. 169–192. Reidel, Dordrecht.Google Scholar
  4. Gudder, S. P. (1970).J. Math. Phys., 1037.Google Scholar
  5. Guz, W. (1974).Rep. Math. Phys.,6, 445.Google Scholar
  6. Guz, W. (1975).Rep. Math. Phys.,7, 313.Google Scholar
  7. Guz, W. (1978).Ann. Inst. Henri Poincaré 29, 357.Google Scholar
  8. Guz, W. (1980).Rep. Math. Phys.,17, 385.Google Scholar
  9. Guz, W. (1981a).Ann. Inst. Henri Poincaré,34, 373Google Scholar
  10. Guz, W. (1981b).Fortschr. Physik,29, 345.Google Scholar
  11. Jauch, J. M., and Piron, C. (1969).Helv. Phys. Acta 42, 842.Google Scholar
  12. Mackey, G. W. (1963).The Mathematical Foundations of Quantum Mechanics. Benjamin, New York.Google Scholar
  13. Maeda, S., and Maeda, F. (1970).Theory of Symmetric Lattices. Springer, New York.Google Scholar
  14. Pool, J. C. T. (1968).Commun. Math. Phys.,9, 212.Google Scholar
  15. Pulmannova, (1976),Commun. Math. Phys.,49, 47.Google Scholar
  16. Randall, C. H., and Foulis, D. J. (1972). InFoundations of Quantum Mechanics and Ordered Linear Spaces, Lecture Notes in Physics, No. 29. Springer, New York.Google Scholar
  17. Varadarajan, V. S. (1968).Geometry of Quantum Theory, Vol. 1, Van Nostrand, Princeton, New Jersey.Google Scholar
  18. Zadeh, L. (1965).Inform. Control,8, 338.Google Scholar
  19. Zierler, N. (1961).Pacific J. Math. 11, 1151.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • W. Guz
    • 1
  1. 1.Institute of PhysicsUniversity of GenoaGenoaItaly

Personalised recommendations