Exponential dichotomy of linear impulsive differential equations in a Banach space

  • D. D. Bainov
  • S. I. Kostadinov
  • P. P. Zabreiko
Article

Abstract

The dichotomy of linear impulsive equations in a Banach space is investigated.

Keywords

Differential Equation Banach Space Field Theory Elementary Particle Quantum Field Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bainov, D. D., Zabreiko, P. P., and Kostadinov, S. I. (1988). Stability of the general exponent of nonlinear impulsive differential equations in a Banach space,International Journal of Theoretical Physics,27, 374–380.Google Scholar
  2. Bainov, D. D., Zabreiko, P. P., and Kostadinov, S. I. (1989). Characteristic exponents of impulsive differential equations in a Banach space,International Journal of Theoretical Physics, to appear.Google Scholar
  3. Elaydi, S., and Hajek, O. (1988). Exponential trichotomy of differential systems,Journal of Mathematical Analysis and Applications,129, 362–374.Google Scholar
  4. Mil'man, V. D., and Myshkis, A. D. (1960). On the stability of motion in the presence of impulses,Siberian Mathematical Journal,1, 233–237 (in Russian).Google Scholar
  5. Palmer, K. J. (1979a). A characterization of exponential dichotomy in terms of topological equivalence,Journal of Mathematical Analysis and Applications,69, 8–16.Google Scholar
  6. Palmer, K. J. (1979b). The structurally stable linear systems on the half-line are those with exponential dichotomies,Journal of Differential Equations,33, 16–25.Google Scholar
  7. Palmer, K. J. (1984a). Exponential dichotomies and transversal homoclinic points,Journal of Differential Equations,55, 225–255.Google Scholar
  8. Palmer, K. J. (1984b). An ordering for linear differential systems and a characterization of exponential separation in terms of reducibility,Journal of Differential Equations,53, 67–97.Google Scholar
  9. Samoilenko, A. M., and Perestyuk, N. A. (1987).Differential Equations with Impulse Effect, Višča Škola, Kiev (in Russian).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • D. D. Bainov
    • 1
  • S. I. Kostadinov
    • 1
  • P. P. Zabreiko
    • 2
  1. 1.Department of MathematicsUniversity of PlovdivPlovdivBulgaria
  2. 2.Department of MathematicsByelorussian State UniversityBulgaria

Personalised recommendations