Skip to main content
Log in

Asymptotic thermodynamic criteria for the persistency of metastable states

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The mean first exit time is logarithmically equivalent to the exponential of the smallest total free energy barrier separating metastable from stable states for a general class of discontinuous Markov processes in the thermodynamic limit. This asymptotic principle of minimum relative free energy difference constitutes a generalization of the corresponding entropy principle to systems in thermal contact with their environment and formalizes the results of a number of previous authors. The overwhelmingly most probable path of exit, in the thermodynamic limit, is the mirror image in time of the causal path. Along the anticausal path the free energy is an increasing function of time and hence does not provide any criterion of evolution. The kinetic mean-field model of a ferromagnetic serves for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, R., and Döring, W. (1935).Annalen der Physik 24, 719.

    Google Scholar 

  • Cramér, H. (1938). Sur un nouveau théorème de la théorie des probabilitités,Acta Scientia et Industrie, 736.

  • Feller, W. (1971).An Introduction to Probability Theory and Its Applications, Vol II, pp. 548ff, Wiley, New York.

    Google Scholar 

  • Freidlin, M. I., and Wentzell, A. D. (1984).Random Perturbations of Dynamical Systems, Chap. 5, Springer, New York.

    Google Scholar 

  • Frenkel, J. (1946).Kinetic Theory of Liquids, Chap. 11, Oxford, London.

    Google Scholar 

  • Griffiths, R. B., Weng, C-Y., and Langer, J. S. (1966).Physical Review,149, 301.

    Google Scholar 

  • Ikeda, N. and Watanabe, S. (1981).Stochastic Differential Equations, p. 451, Kodansha, Tokyo.

    Google Scholar 

  • Ito, H. M. (1984).Journal of Physics A: Mathematical, Nuclear and General,17, 1075.

    Google Scholar 

  • Kac, M. (1968). InStatistical Physics, Phase Transitions and Superfluidity, Chrétien, M., Gross, E. P., and Deser, S. eds., Vol. 1, p. 243, Gordon & Breach, New York.

    Google Scholar 

  • Kikuchi, R. (1960).Annals Physics (New York),10, 127.

    Google Scholar 

  • Kikuchi, R. (1961).Physical Review,124, 1682.

    Google Scholar 

  • Kramers, H. A. (1940).Physica,7, 284.

    Google Scholar 

  • Kubo, R., Matsuo, K., and Kitahara, K. (1973).Journal Statistical Physics,9, 51.

    Google Scholar 

  • Labkovskii, V. A. (1972).Akad. Nauk Gruzin. SSR,67, 41 (in Russian).

    Google Scholar 

  • Landau, L. D. and Lifshitz, E. M. (1959).Statistical Physics, p. 377. Pergamon, London.

    Google Scholar 

  • Lavenda, B. H. (1978).Thermodynamics of Irreversible Processes, Chap. VI. Macmillan, London.

    Google Scholar 

  • Lavenda, B. H. (1985a).Nonequilibrium Statistical Thermodynamics, Chap. 7. Wiley-Interscience, Chichester.

    Google Scholar 

  • Lavenda, B. H. (1985b).Journal of Physics A,18, 293.

    Google Scholar 

  • Lavenda, B. H., and Santamato, E. (1982).Journal of Statistical Physics,29, 345.

    Google Scholar 

  • Lavenda, B. H., and Cardella, C. (1985). On the persistence of irreversible processes under the influence of random thermal fluctuations,Journal of Physics A: Mathematical, Nuclear and General,18.

  • Onsager, L., and Machlup, S. (1953).Physical Review,91, 1505.

    Google Scholar 

  • Stratonovich, R. L. (1963).Topics in the Theory of Random Noise, Vol. 1, p. 76. Gordon & Breach, New York.

    Google Scholar 

  • Suzuki, M, and Kubo, R. (1968).Journal of the Physical Society of Japan,24, 51.

    Google Scholar 

  • van Kampen, N. G. (1981).Stochastic Processes in Physics and Chemistry, Chap. VI. North-Holland, Amsterdam.

    Google Scholar 

  • Wentzell, A. D. (1976).Theory of Probability and Applications,21, 227;21, 449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavenda, B.H., Cardella, C. Asymptotic thermodynamic criteria for the persistency of metastable states. Int J Theor Phys 25, 95–111 (1986). https://doi.org/10.1007/BF00669717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00669717

Keywords

Navigation