Advertisement

International Journal of Theoretical Physics

, Volume 18, Issue 12, pp 861–913 | Cite as

Stochastic quantization: A review

  • Kunio Yasue
Article

Abstract

The present status of the work on the application of the stochastic quantization procedure is reviewed. A compact mathematical introduction to the basic notions of random processes such as Markov processes, Martingales and Fokker-Planck equations is presented. The stochastic quantization procedure is explained in much detail and it is found to possess remarkable features which can not be achieved within the conventional framework of quantum theory. This admits us to give systematic analyses of irreversible quantum dynamics of dissipative systems and the vacuum tunneling phenomena in non-Abelian gauge theory

Keywords

Field Theory Elementary Particle Gauge Theory Quantum Field Theory Quantum Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, T., Bender, C. M., and Wu, T. T. (1973).Physical Review D,8, 3346.Google Scholar
  2. Bitar, K. M., and Chang, S. J. (1978).Physical Review D,17, 486.Google Scholar
  3. Callan, C. G., Jr., and Coleman, S. (1977).Physical Review D,16, 1762.Google Scholar
  4. Callan, C. G., Jr., Dashen, R. F., and Gross, D. J. (1976).Physics Letters,63B, 334.Google Scholar
  5. Callan, C. G., Jr., Dashen, R. F., and Gross, D. J. (1977).Physics Letters,66B, 375.Google Scholar
  6. Caubet, J-P. (1976).Le Mouvement Brownien Relativiste, Lecture Notes in Mathematics, No. 559. Springer, Berlin.Google Scholar
  7. Chandrasekhar, S. (1943).Reviews of Modem Physics,15, 1.Google Scholar
  8. Coleman, S. (1977).Physical Review D,15, 2929.Google Scholar
  9. Creutz, M., and Tudron, T. N. (1977).Physical Review D,16, 2978.Google Scholar
  10. Dankel, T., Jr. (1970).Archive for Rational Mechanics and Analysis,37, 192.Google Scholar
  11. Dankel, T., Jr. (1977).Journal of Mathematical Physics,18, 253.Google Scholar
  12. Davies, E. B. (1976).Quantum Theory of Open Systems. Academic Press, London.Google Scholar
  13. Davis, M. (1977).Applied Non-Standard Analysis. J. Wiley&Sons, New York.Google Scholar
  14. Dohrn, D., Guerra, F. (1977). “Geodesic Correction to Stochastic Parallel Displacement of Tensors,” Expanded version of a talk given by F. Guerra at the Conference on “Stochastic Behavior in Classical and Quantum Hamiltonian Systems,” Como, June 20–24, 1977.Google Scholar
  15. Dohrn, D., and Guerra, F. (1978).Lettere al Nuovo Cimenta,22, 121.Google Scholar
  16. Feynman, R. P. (1972).Statistical Mechanics. Benjamin, New York.Google Scholar
  17. Feynman, R. P., Leighton, R. B., and Sands, M. (1965).The Feynman Lectures on Physics, Vol. 3. Addison-Wesley, Reading, Massachusetts.Google Scholar
  18. Ford, G. W., Kac, M., and Mazur, P. (1965).Journal of Mathematical Physics,6, 504.Google Scholar
  19. Gildener, E., and Patrascioiu, A. (1977).Physical Review D,16, 423, 1802.Google Scholar
  20. Gribov, V. N. (1977). Materials for the XII Winter School of the Leningrad Nuclear Research Institute.Google Scholar
  21. Griffin, J. J., and Kan, K. K. (1976).Reviews of Modern Physics,48, 467.Google Scholar
  22. Hepp, K. and Liev, E. (1973). “Constructive Macroscopic Quantum Electrodynamics,” in G. Velo and A. Wightman, eds.,Constructive Quantum Field Theory, Lecture Notes in Physics Vol. 25. Springer, Berlin.Google Scholar
  23. Hida, T. (1970).Stationary Stochastic Processes. Princeton, U.P., Princeton, New Jersey.Google Scholar
  24. Hida, T. (1975a).Buraun Undô. Iwanami Shoten, Tokyo (in Japanese).Google Scholar
  25. Hida, T. (1975b).Analysis of Brownian Functional. Carleton U. P., Ottawa.Google Scholar
  26. Hida, T., and Hitsuda, M. (1976).Gausu Katei. Kinokuniya Shoten, Tokyo (in Japanese).Google Scholar
  27. Hida, T., and Streit, L. (1977).Nagoya Mathematics Journal,68, 21.Google Scholar
  28. Hirayama, M., Chia Tze, H., Ishida, J., and Kawabe, T. (1978).Physics Letters,66A, 352.Google Scholar
  29. 't Hooft, G. (1976),Physical Review Letters,37, 8.Google Scholar
  30. Itô, K. (1976).Sû-gaku,28, 41 (in Japanese).Google Scholar
  31. Jackiw, R. (1977).Reviews of Modern Physics,49, 681.Google Scholar
  32. Jackiw, R., and Rebbi, C. (1976).Physical Review Letters,37, 172.Google Scholar
  33. Jona-Lasinio, G. (1978). “Semiclassical Limit and Stochastic Dynamics,” invited talk at the conference “Bielefeld Encounters in Physics and Mathematics II,” December 1–7, 1978.Google Scholar
  34. Kan, K. K., and Griffin, J. J. (1974).Physics Letters,50B, 241.Google Scholar
  35. Klauder, J. R., and Sudarshan, E. C. G. (1968).Fundamentals of Quantum Optics. Benjamin, New York.Google Scholar
  36. Kolmogorov, A. (1933).Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin.Google Scholar
  37. Kostin, M. D. (1972).Journal of Chemical Physics,57, 3589.Google Scholar
  38. Kostin, M. D. (1975).Journal of Statistical Physics,12, 145.Google Scholar
  39. Kurata, R. (1977).Su-ri Kagaku (Math. Sci.) no. 170, 79 (in Japanese).Google Scholar
  40. Langer, J. S. (1967).Annals of Physics,41, 108.Google Scholar
  41. Lehr, W. J., and Park, J. L. (1977).Journal of Mathematical Physics,18, 1235.Google Scholar
  42. Messer, J. (1979).Acta Physica Austriaca,50, 75.Google Scholar
  43. Nelson, E. (1964).Journal of Mathematical Physics,5, 332.Google Scholar
  44. Nelson, E. (1966).Physical Review,150, 1079.Google Scholar
  45. Nelson, E. (1967).Dynamical Theories of Brownian Motion. Princeton U.P., Princeton, New Jersey.Google Scholar
  46. Nelson, E. (1969).Topics in Dynamics I: Flows. Princeton U.P., Princeton, New Jersey.Google Scholar
  47. Nelson, E. (1973).Journal of Functional Analysis,12, 97.Google Scholar
  48. Nelson, E. (1976). “Internal Set Theory: a new approach to non-standard analysis,” Materials for the 1976 Summer Meeting of the AMS in Toronto.Google Scholar
  49. Neveu, J. (1970).Bases Mathématiques du Calcul des Probabilités. Massen et Cie, Paris.Google Scholar
  50. Pak, N. K. (1977).Physical Review, D,16, 3090.Google Scholar
  51. Polyakov, A. M. (1975).Physics Letters,59B, 82.Google Scholar
  52. Razavy, M. (1977).Zeitschrift für Physik B,26, 201.Google Scholar
  53. Razavy, M. (1978).Canadian Journal of Physics,56, 311.Google Scholar
  54. Rogovin, D., and Scully, M. (1976).Physics Reports,25C, 175.Google Scholar
  55. Skagerstam, B. (1975).Physics Letters,58B, 21.Google Scholar
  56. Skagerstam, B. (1977).Journal of Mathematical Physics,18, 308.Google Scholar
  57. Takabayasi, T. (1977). InRyô-shi Butsurigaku no Tenbô, (Editors) H. Ezawa and T. Tsuneto, eds. Iwanami Shoten, Tokyo (in Japanese).Google Scholar
  58. Yasue, K. (1976).Physics Letters,64B, 239.Google Scholar
  59. Yasue, K. (1977a).Journal of Statistical Physics,16, 113.Google Scholar
  60. Yasue, K. (1977b).Progress in Theoretical Physics,57, 318.Google Scholar
  61. Yasue, K. (1978a).Journal of Mathematical Physics,19, 1892.Google Scholar
  62. Yasue, K. (1978b).Annals of Physics,114, 479.Google Scholar
  63. Yasue, K. (1978c).Physical Review Letters,40, 665.Google Scholar
  64. Yasue, K. (1978d).Physical Review D,18, 532.Google Scholar
  65. Yasue, K. (1978e).Journal of Mathematical Physics,19, 1671.Google Scholar
  66. Yasue, K. (1978f).Physics Letters,73B, 302.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Kunio Yasue
    • 1
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenève 4Switzerland

Personalised recommendations